Dynamic IGBT thermal management strategy based on real-time junction temperature estimation
-
摘要: 绝缘栅双极性晶体管(Insulated Gate Bipolar Transistor,IGBT)是电动汽车重要的能源传输和转换元件. 但IGBT长期在变化工况下工作,导致热负荷较高,严重影响其使用寿命. 通过建立IGBT结温估计模型进行实时结温观测,定性分析IGBT结温与开关频率、母线电压之间的关系. 为降低IGBT在循环工况下的热负荷,提出一种IGBT结温区域控制策略,以控制最高结温和结温波动为目标,将控制区域进行划分,分别采用模糊控制和PI控制对开关频率和母线电压进行控制. 结果表明,在 NEDC工况下最高结温平均降低5.1 ℃,IGBT结温波动平均降低2.6 ℃,验证了该控制策略的有效性,提高了IGBT的可靠性和运行寿命.Abstract: Insulated gate bipolar transistor (Insulated Gate Bipolar Transistor, IGBT) is an important energy transfer and conversion component of electric vehicles. But working under varying conditions for a long time will result in high heat loads, which seriously affect IGBT service life. By establishing IGBT junction temperature estimation model for real-time temperature observation, the relationship between IGBT junction temperature, switch frequency and bus voltage was analyzed. In order to reduce the heat load of IGBT under cyclic conditions, the IGBT junction temperature regional control strategy was proposed. Aiming at controlling the maximum junction temperature and the junction temperature fluctuation, the control region was divided, and the switching frequency and bus voltage were controlled by fuzzy control and PI control respectively. The results show that the maximum junction temperature decreases by 5.1 ℃ and the junction temperature fluctuation of IGBT decreases by 2.6 ℃ on average under new European driving cycle (NEDC) condition, which verified the effectiveness of the control strategy and improved the reliability and operation life of IGBT.
-
表 1 部件热容参数
Table 1. Component heat capacity parameters
部件 项目 参数 电机绕组 材料
质量/kg纯铜
5电机外壳 材料
质量/kg铸铝
2电机转子 材料
质量/kg
密度/(${\rm{kg}} \cdot {{\rm{m}}^{ - 3} }$)
材料热值/(${\rm{J }}\cdot {{\rm{kg}}^{ - 1} } \cdot {{\rm{K}}^{ - 1} }$)
热导率/(${\rm{W}} \cdot {{\rm{m}}^{ - 1} } \cdot {{\rm{K}}^{ - 1} }$)环氧基树脂
10
2400
1000
130电机控制器半导体 材料
质量/kg碳素钢
1电机控制器外壳 材料
质量/kg碳素钢
2表 2 电动汽车IGBT热管理模型验证结果
Table 2. Verification results of IGBT thermal management model for electric vehicle
工况 仿真温度/℃ 试验温度/℃ 相对误差/% 电机转速
1000 ${\rm{r}}/\min$,
负载250 ${\rm{N}} \cdot {\rm{m}}$56.5 54.0 4.7 电机转速
2000 ${\rm{r}}/\min$,
负载100 ${\rm{N}} \cdot {\rm{m}}$40.1 39.0 2.7 电机转速
5000 ${\rm{r}}/\min$,
负载50 ${\rm{N}} \cdot {\rm{m}}$39.4 38.0 3.8 表 3 过热区域开关频率模糊控制规则表
Table 3. Table of fuzzy control rules for switching frequency in overheated area
开关频率 IGBT最高结温 NB NM NS ZO PS PM PB NB NB NB NB NM NS NS ZO NM NB NB NM NM NS ZO ZO NS NB NM NS NS ZO ZO PS ZO NM NS NS ZO ZO PM PM PS NS NS ZO PS PM PM PM PM NS ZO PS PM PM PM PB PB ZO PS PM PM PB PB PB 表 4 高/低功率循环区域开关频率模糊控制规则
Table 4. Fuzzy control rules for switching frequency in high/low power cycle regions
开关频率 IGBT结温波动 NB NM NS ZO PS PM PB NB NB NB NB NM NS NS ZO NM NB NM NM NM NS ZO ZO NS NM NM NS NS ZO ZO PS ZO NM NS NS ZO ZO PM PM PS NS NS ZO PS PM PM PM PM NS ZO PS PM PM PM PB PB ZO PS PM PM PB PB PB -
[1] MA M, SUN Z, YE W, et al. Method of junction temperature estimation and over temperature protection used for electric vehicle's IGBT power modules[J] . Microelectronics Reliability,2018,88/89/90:1226 − 1230. [2] HIRSCHMANN D, TISSEN D, SCHRODER S, et al. Reliability prediction for inverters in hybrid electrical vehicles[J] . IEEE Transactions on Power Electronics,2007,22(6):2511 − 2517. doi: 10.1109/TPEL.2007.909236 [3] 周雒维, 王博, 张益, 等. 非平稳工况下功率半导体器件结温管理技术综述[J] . 中国电机工程学报,2018,38(8):2394 − 2407, 2549. [4] FALCK J, ANDRESEN M, LISERRE M. Active thermal control of IGBT power electronic converters[C]// Proceedings of Conference of the IEEE Industrial Electronics Society. Vienna: IEEE, 2016: 1 − 6. [5] LIANG W, CASTELLAZZI A. Temperature adaptive driving of power semiconductor devices[J] . IEEE,2010:1110 − 1114. [6] YU X X, ASHWIN M, WABNG H H, et al. Control of parallel-connected power converters for low-voltage microgrid: Part I: A hybrid control architecture.[J] . IEEE Transactions on Power Electronics,2010,25(12):2962 − 2970. doi: 10.1109/TPEL.2010.2087393 [7] 黄守道, 陈叶宇, 刘平, 等. 基于频段导向的PWM逆变器主动热管理控制[J] . 电力自动化设备,2017,37(5):34 − 39. [8] BROECK C, RUPPERT L A, LORENZ R D, et al. Active thermal cycle reduction of power modules via gate resistance manipulation[C]//Proceedings of 2018 IEEE Applied Power Electronics Conference and Exposition (APEC). San Antonio: IEEE, 2018: 1−6. [9] XIONG D, LI G, SUN P, et al. A hybrid modulation method for lifetime extension of power semiconductors in wind power converters[C]//Proceedings of 2015 IEEE Applied Power Electronics Conference and Exposition (APEC). Charlotte: IEEE, 2015: 2565−2570. [10] 魏云海, 陈民铀, 赖伟, 等. 基于IGBT结温波动平滑控制的主动热管理方法综述[J] . 电工技术学报,2022,37(6):1415 − 1430. [11] 毕长飞. 大功率直驱风电机组变流器的功率器件热负荷分析[J] . 机械设计与制造,2018(9):236 − 239. [12] 张益. 变流器中功率开关器件结温平滑研究[D]. 重庆: 重庆大学, 2018. [13] WANG X, WANG X, XUN Y. An optimal DC bus voltage control method to improve the junction temperature of IGBTs in low speed operations of traction applications[C]//Proceedings of Power Electronics Conference. Auckland: IEEE, 2016: 1−6. [14] 周朋飞, 陈权, 李国丽. T型三电平逆变器功率器件结温控制研究[J] . 电气传动,2019,49(4):38 − 42. [15] 李夔宁, 邓廷婷, 谢翌, 等. 基于熵分析的电动汽车电机及电机控制器热管理系统研究[J] . 汽车实用技术,2020(8):9 − 13. [16] MURDOCK D A, RAMOS J J, CONNORS J J, et al. Active thermal control of power electronics modules[J] . IEEE Transactions on Industry Applications,2006,42(2):552 − 558. doi: 10.1109/TIA.2005.863905