留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于方向距离函数和信息熵的集成交叉效率模型

宁阳雪 潘昊君 王国强

宁阳雪, 潘昊君, 王国强. 基于方向距离函数和信息熵的集成交叉效率模型[J]. 上海工程技术大学学报, 2024, 38(3): 328-333. doi: 10.12299/jsues.23-0022
引用本文: 宁阳雪, 潘昊君, 王国强. 基于方向距离函数和信息熵的集成交叉效率模型[J]. 上海工程技术大学学报, 2024, 38(3): 328-333. doi: 10.12299/jsues.23-0022
NING Yangxue, PAN Haojun, WANG Guoqiang. Integrated cross-efficiency model based on directional distance function and information entropy[J]. Journal of Shanghai University of Engineering Science, 2024, 38(3): 328-333. doi: 10.12299/jsues.23-0022
Citation: NING Yangxue, PAN Haojun, WANG Guoqiang. Integrated cross-efficiency model based on directional distance function and information entropy[J]. Journal of Shanghai University of Engineering Science, 2024, 38(3): 328-333. doi: 10.12299/jsues.23-0022

基于方向距离函数和信息熵的集成交叉效率模型

doi: 10.12299/jsues.23-0022
基金项目: 国家自然科学基金面上项目资助(11971302);浦东新区科技发展基金产学研专项资金(人工智能)资助(PKX2020-R02);上海市大学生创新创业训练计划资助(CS2221001)
详细信息
    作者简介:

    宁阳雪(1997−),女,硕士生,研究方向为数据包络分析。E-mail:ningyx2016@163.com

    通讯作者:

    王国强(1977−),男,教授,博士,研究方向为最优化理论与算法、高维数据统计推断、统计优化和数据挖掘。E-mail:guoq_wang@hotmail.com

  • 中图分类号: O221

Integrated cross-efficiency model based on directional distance function and information entropy

  • 摘要: 针对传统交叉效率模型无法处理输入输出数据中同时含有负数的问题,提出一种基于方向距离函数和信息熵的集成交叉效率模型。首先,利用方向距离函数的思想对负数进行处理。其次,结合交叉效率模型实现决策单元的完全排序。接着,借助信息熵的变异系数获取一组用于交叉效率集结的公共权重,以避免传统模型的权重偏差,且保留评价过程中的决策信息。最后,通过一个数值案例验证了本研究模型的有效性和实用性,扩展了交叉效率模型的研究范围和应用场景。
  • 表  1  基于方向距离函数的交叉效率矩阵B

    Table  1.   Cross efficiency matrix B based on directional distance function

    评价$\mathrm{D}\mathrm{M}{\mathrm{U} }_{d }$被评价$\mathrm{D}\mathrm{M}{\mathrm{U} }_{j }$
    12···n
    $ 1 $$ {\beta }_{11} $$ {\beta }_{12} $···$ {\beta }_{1n} $
    $ 2 $$ {\beta }_{21} $$ {\beta }_{22} $···$ {\beta }_{2n} $
    $ \vdots $$ \vdots $$ \vdots $$ \vdots $
    $ n $$ {\beta }_{n1} $$ {\beta }_{n2} $···$ {\beta }_{nn} $
    下载: 导出CSV

    表  2  算例数据

    Table  2.   Example data

    $\mathrm{D}\mathrm{M}{\mathrm{U} }_{j }$投入产出
    $ {x}_{1} $$ {x}_{2} $$ {y}_{1} $$ {y}_{2} $$ {y}_{3} $
    11.03−0.050.56−0.09−0.44
    21.75−0.170.74−0.24−0.31
    31.44−0.561.37−0.35−0.21
    410.80−0.225.61−0.98−3.79
    51.30−0.070.49−1.08−0.34
    61.98−0.101.61−0.44−0.34
    70.97−0.170.82−0.08−0.43
    89.82−2.320.48−1.42−1.94
    91.590.000.520.00−0.37
    105.96−0.152.14−0.52−0.18
    111.29−0.110.570.00−0.24
    122.38−0.250.57−0.67−0.43
    1310.30−0.169.56−0.580.00
    下载: 导出CSV

    表  3  三种模型结果比较

    Table  3.   Results comparison of three models

    $\mathrm{D}\mathrm{M}{\mathrm{U} }_{j }$方向距离函数模型基于方向距离函数的
    交叉效率模型
    本研究模型
    $ \beta $$ 1-\beta $排名$ \beta $$ 1-\beta $排名$ \beta $$ 1-\beta $排名
    10.03510.964980.14940.850660.13320.86686
    20.08180.9182100.16020.839870.15030.84977
    30.00001.000010.05100.949020.04560.95441
    40.20680.7932130.49520.5048130.46930.530713
    50.07570.924390.29270.7073120.28780.712212
    60.02920.970870.18770.812380.17670.82338
    70.00001.000010.11200.888040.09480.90524
    80.00001.000010.29010.7099110.26540.734611
    90.00550.994560.13870.861350.12530.87475
    100.14040.8596110.25420.745890.25330.74679
    110.00001.000010.06670.933330.06040.93963
    120.14950.8505120.26970.7303100.26100.739010
    130.00001.000010.04550.954510.04640.95362
    下载: 导出CSV
  • [1] CHARNES A, COOPER W W, RHODES E. Measuring the efficiency of decision making units[J] . European Journal of Operational Research,1978,2(6):429 − 444. doi: 10.1016/0377-2217(78)90138-8
    [2] 魏权龄. 数据包络分析(DEA)[M]. 北京: 科学出版社, 2006.
    [3] EMROUZNEJAD A, YANG G. A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016[J] . Socio-Economic Planning Sciences,2018,61:4 − 8. doi: 10.1016/j.seps.2017.01.008
    [4] SEXTON T R, SILKMAN R H, HOGAN A J. Data envelopment analysis: Critique and extensions[J] . New Directions for Program Evaluation,1986(32):73 − 105.
    [5] DOYLE J, GREEN R. Efficiency and cross-efficiency in DEA: Derivations, meanings and uses[J] . Journal of the Operational Research Society,1994,45(5):567 − 578. doi: 10.1057/jors.1994.84
    [6] WANG Y, CHIN K. A neutral DEA model for cross-efficiency evaluation and its extension[J] . Expert Systems with Applications,2010,37(5):3666 − 3675. doi: 10.1016/j.eswa.2009.10.024
    [7] PASTOR J T. Translation invariance in data envelopment analysis: A generalization[J] . Annals of Operations Research,1996,66(2):91 − 102. doi: 10.1007/BF02187295
    [8] BANKER R D, CHARNES A, COOPER W W. Some models for estimating technical and scale inefficiencies in data envelopment analysis[J] . Management Science,1984,30(9):1078 − 1092. doi: 10.1287/mnsc.30.9.1078
    [9] PORTELA M S, THANASSOULIS E, SIMPSON G. Negative data in DEA: A directional distance approach applied to bank branches[J] . Journal of the Operational Research Society,2004,55(10):1111 − 1121. doi: 10.1057/palgrave.jors.2601768
    [10] LIN R. Cross-efficiency evaluation capable of dealing with negative data: A directional distance function based approach[J] . Journal of the Operational Research Society,2020,71(3):505 − 516. doi: 10.1080/01605682.2019.1567652
    [11] 梁樑, 吴杰. 数据包络分析(DEA)的交叉效率研究进展与展望[J] . 中国科学技术大学学报,2013,43(11):941 − 947. doi: 10.3969/j.issn.0253-2778.2013.11.010
    [12] WU J, SUN J, LIANG L. DEA cross-efficiency aggregation method based upon Shannon entropy[J] . International Journal of Production Research,2012,50(23):6726 − 6736. doi: 10.1080/00207543.2011.618150
    [13] SONG L, LIU F. An improvement in DEA cross‐efficiency aggregation based on the Shannon entropy[J] . International Transactions in Operational Research,2018,25(2):705 − 714. doi: 10.1111/itor.12361
    [14] 钱振华, 成刚. 基于广义平均的方向距离函数效率测量方法[J] . 数学的实践与认识,2012,42(23):100 − 106. doi: 10.3969/j.issn.1000-0984.2012.23.012
    [15] SHANNON C E. A mathematical theory of communication[J] . The Bell System Technical Journal,1948,27(3):379 − 423. doi: 10.1002/j.1538-7305.1948.tb01338.x
    [16] LIN R, LIU Y. Super-efficiency based on the directional distance function in the presence of negative data[J] . Omega,2019,85:26 − 34. doi: 10.1016/j.omega.2018.05.009
  • 加载中
计量
  • 文章访问数:  55
  • HTML全文浏览量:  29
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-12
  • 网络出版日期:  2024-11-14
  • 刊出日期:  2024-09-30

目录

    /

    返回文章
    返回