Integrated cross-efficiency model based on directional distance function and information entropy
-
摘要: 针对传统交叉效率模型无法处理输入输出数据中同时含有负数的问题,提出一种基于方向距离函数和信息熵的集成交叉效率模型。首先,利用方向距离函数的思想对负数进行处理。其次,结合交叉效率模型实现决策单元的完全排序。接着,借助信息熵的变异系数获取一组用于交叉效率集结的公共权重,以避免传统模型的权重偏差,且保留评价过程中的决策信息。最后,通过一个数值案例验证了本研究模型的有效性和实用性,扩展了交叉效率模型的研究范围和应用场景。Abstract: Aiming at the problem that traditional cross-efficiency model cannot handle both input and output data containing negative numbers, an integrated cross-efficiency model based on directional distance function and information entropy was proposesed. First of all, the idea of direction distance function was used to deal with negative numbers. Secondly, the complete ranking of decision units was realized by combining cross efficiency. Then, with the help of the variation coefficient of information entropy, a set of public weights for cross-efficiency integration were obtained to avoid the weight deviation of the traditional model and retain the decision information in the evaluation process. Finally, the effectiveness and practicability of the proposed model were verified by a numerical example, and the research scope and application scenarios of the cross-efficiency model were extended.
-
表 1 基于方向距离函数的交叉效率矩阵B
Table 1. Cross efficiency matrix B based on directional distance function
评价$\mathrm{D}\mathrm{M}{\mathrm{U} }_{d }$ 被评价$\mathrm{D}\mathrm{M}{\mathrm{U} }_{j }$ 1 2 ··· n $ 1 $ $ {\beta }_{11} $ $ {\beta }_{12} $ ··· $ {\beta }_{1n} $ $ 2 $ $ {\beta }_{21} $ $ {\beta }_{22} $ ··· $ {\beta }_{2n} $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ n $ $ {\beta }_{n1} $ $ {\beta }_{n2} $ ··· $ {\beta }_{nn} $ 表 2 算例数据
Table 2. Example data
$\mathrm{D}\mathrm{M}{\mathrm{U} }_{j }$ 投入 产出 $ {x}_{1} $ $ {x}_{2} $ $ {y}_{1} $ $ {y}_{2} $ $ {y}_{3} $ 1 1.03 −0.05 0.56 −0.09 −0.44 2 1.75 −0.17 0.74 −0.24 −0.31 3 1.44 −0.56 1.37 −0.35 −0.21 4 10.80 −0.22 5.61 −0.98 −3.79 5 1.30 −0.07 0.49 −1.08 −0.34 6 1.98 −0.10 1.61 −0.44 −0.34 7 0.97 −0.17 0.82 −0.08 −0.43 8 9.82 −2.32 0.48 −1.42 −1.94 9 1.59 0.00 0.52 0.00 −0.37 10 5.96 −0.15 2.14 −0.52 −0.18 11 1.29 −0.11 0.57 0.00 −0.24 12 2.38 −0.25 0.57 −0.67 −0.43 13 10.30 −0.16 9.56 −0.58 0.00 表 3 三种模型结果比较
Table 3. Results comparison of three models
$\mathrm{D}\mathrm{M}{\mathrm{U} }_{j }$ 方向距离函数模型 基于方向距离函数的
交叉效率模型本研究模型 $ \beta $ $ 1-\beta $ 排名 $ \beta $ $ 1-\beta $ 排名 $ \beta $ $ 1-\beta $ 排名 1 0.0351 0.9649 8 0.1494 0.8506 6 0.1332 0.8668 6 2 0.0818 0.9182 10 0.1602 0.8398 7 0.1503 0.8497 7 3 0.0000 1.0000 1 0.0510 0.9490 2 0.0456 0.9544 1 4 0.2068 0.7932 13 0.4952 0.5048 13 0.4693 0.5307 13 5 0.0757 0.9243 9 0.2927 0.7073 12 0.2878 0.7122 12 6 0.0292 0.9708 7 0.1877 0.8123 8 0.1767 0.8233 8 7 0.0000 1.0000 1 0.1120 0.8880 4 0.0948 0.9052 4 8 0.0000 1.0000 1 0.2901 0.7099 11 0.2654 0.7346 11 9 0.0055 0.9945 6 0.1387 0.8613 5 0.1253 0.8747 5 10 0.1404 0.8596 11 0.2542 0.7458 9 0.2533 0.7467 9 11 0.0000 1.0000 1 0.0667 0.9333 3 0.0604 0.9396 3 12 0.1495 0.8505 12 0.2697 0.7303 10 0.2610 0.7390 10 13 0.0000 1.0000 1 0.0455 0.9545 1 0.0464 0.9536 2 -
[1] CHARNES A, COOPER W W, RHODES E. Measuring the efficiency of decision making units[J] . European Journal of Operational Research,1978,2(6):429 − 444. doi: 10.1016/0377-2217(78)90138-8 [2] 魏权龄. 数据包络分析(DEA)[M]. 北京: 科学出版社, 2006. [3] EMROUZNEJAD A, YANG G. A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016[J] . Socio-Economic Planning Sciences,2018,61:4 − 8. doi: 10.1016/j.seps.2017.01.008 [4] SEXTON T R, SILKMAN R H, HOGAN A J. Data envelopment analysis: Critique and extensions[J] . New Directions for Program Evaluation,1986(32):73 − 105. [5] DOYLE J, GREEN R. Efficiency and cross-efficiency in DEA: Derivations, meanings and uses[J] . Journal of the Operational Research Society,1994,45(5):567 − 578. doi: 10.1057/jors.1994.84 [6] WANG Y, CHIN K. A neutral DEA model for cross-efficiency evaluation and its extension[J] . Expert Systems with Applications,2010,37(5):3666 − 3675. doi: 10.1016/j.eswa.2009.10.024 [7] PASTOR J T. Translation invariance in data envelopment analysis: A generalization[J] . Annals of Operations Research,1996,66(2):91 − 102. doi: 10.1007/BF02187295 [8] BANKER R D, CHARNES A, COOPER W W. Some models for estimating technical and scale inefficiencies in data envelopment analysis[J] . Management Science,1984,30(9):1078 − 1092. doi: 10.1287/mnsc.30.9.1078 [9] PORTELA M S, THANASSOULIS E, SIMPSON G. Negative data in DEA: A directional distance approach applied to bank branches[J] . Journal of the Operational Research Society,2004,55(10):1111 − 1121. doi: 10.1057/palgrave.jors.2601768 [10] LIN R. Cross-efficiency evaluation capable of dealing with negative data: A directional distance function based approach[J] . Journal of the Operational Research Society,2020,71(3):505 − 516. doi: 10.1080/01605682.2019.1567652 [11] 梁樑, 吴杰. 数据包络分析(DEA)的交叉效率研究进展与展望[J] . 中国科学技术大学学报,2013,43(11):941 − 947. doi: 10.3969/j.issn.0253-2778.2013.11.010 [12] WU J, SUN J, LIANG L. DEA cross-efficiency aggregation method based upon Shannon entropy[J] . International Journal of Production Research,2012,50(23):6726 − 6736. doi: 10.1080/00207543.2011.618150 [13] SONG L, LIU F. An improvement in DEA cross‐efficiency aggregation based on the Shannon entropy[J] . International Transactions in Operational Research,2018,25(2):705 − 714. doi: 10.1111/itor.12361 [14] 钱振华, 成刚. 基于广义平均的方向距离函数效率测量方法[J] . 数学的实践与认识,2012,42(23):100 − 106. doi: 10.3969/j.issn.1000-0984.2012.23.012 [15] SHANNON C E. A mathematical theory of communication[J] . The Bell System Technical Journal,1948,27(3):379 − 423. doi: 10.1002/j.1538-7305.1948.tb01338.x [16] LIN R, LIU Y. Super-efficiency based on the directional distance function in the presence of negative data[J] . Omega,2019,85:26 − 34. doi: 10.1016/j.omega.2018.05.009