留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁剪切对电子在磁岛中热输运的影响

李泽坤 夏清豪 査学军

李泽坤, 夏清豪, 査学军. 磁剪切对电子在磁岛中热输运的影响[J]. 上海工程技术大学学报, 2024, 38(1): 90-95, 100. doi: 10.12299/jsues.23-0029
引用本文: 李泽坤, 夏清豪, 査学军. 磁剪切对电子在磁岛中热输运的影响[J]. 上海工程技术大学学报, 2024, 38(1): 90-95, 100. doi: 10.12299/jsues.23-0029
LI Zekun, XIA Qinghao, ZHA Xuejun. Effect of magnetic shearing on thermal transport of electrons in magnetic islands[J]. Journal of Shanghai University of Engineering Science, 2024, 38(1): 90-95, 100. doi: 10.12299/jsues.23-0029
Citation: LI Zekun, XIA Qinghao, ZHA Xuejun. Effect of magnetic shearing on thermal transport of electrons in magnetic islands[J]. Journal of Shanghai University of Engineering Science, 2024, 38(1): 90-95, 100. doi: 10.12299/jsues.23-0029

磁剪切对电子在磁岛中热输运的影响

doi: 10.12299/jsues.23-0029
基金项目: 国家磁约束核聚变能发展研究专项资助(2018YFE0309100);国家自然科学基金项目资助(11975022)
详细信息
    作者简介:

    李泽坤(1996−),男,硕士生,研究方向为高温等离子体。E-mail:2660466804@qq.com

    通讯作者:

    査学军(1971−),男,副教授,博士,研究方向为高温等离子体。E-mail:xjzha@dhu.edu.cn

  • 中图分类号: TL61+2.2

Effect of magnetic shearing on thermal transport of electrons in magnetic islands

  • 摘要: 通过数值求解托卡马克等离子体能量输运方程,研究了磁剪切参数对磁岛内电子温度分布和热输运的影响。结果表明,对于不同的安全因子的径向分布,磁剪切参数会影响有效径向热输运系数,剪切程度越高,有效径向热输运系数${\chi _r}$越大;当磁场扰动程度足够高时,高剪切对有效径向热输运系数${\chi _r}$影响会降低。
  • 图  1  安全因子的径向分布

    Figure  1.  Radial distribution of the safety factor

    图  2  $w = 0.005a$$w = 0.05a$时,$\log \left( {{\chi _{r}}/{\chi _ \bot }\;} \right)$随剪切长度$ {L_q} $的变化

    Figure  2.  With $w = 0.005a$ and $w = 0.05a$, $\log \left( {{\chi _{r}}/{\chi _ \bot }\;} \right)$ vs shear length $ {L_q} $

    图  3  磁剪切大小随径向位置变化的安全因子径向分布图

    Figure  3.  Radial distribution diagram of safety factor of magnetic shear size vs radial position

    图  4  $\log \left( {{\chi _{r}}/{\chi _ \bot }\;} \right)$$\log \left( {{\chi _\parallel }/{\chi _ \bot }\;} \right)$变化图

    Figure  4.  variation diagram of $\log \left( {{\chi _{r}}/{\chi _ \bot }\;} \right)$ vs $\log \left( {{\chi _\parallel }/{\chi _ \bot }\;} \right)$

    图  5  $\psi {\text{ = }}2 \times {10^{{{ - }}3}}{a}{{B}_{t}}$$ {L_q} = 0.05a $$\phi = 0$时磁岛在$r - \theta $平面上的磁面结构图

    Figure  5.  When $\psi {\text{ = }}2 \times {10^{{{ - }}3}}{a}{{B}_{t}}$, $ {L_q} = 0.05a $, $\phi = 0$, magnetic surface structure diagram of magnetic islandon $r - \theta $ plane

    图  6  $\psi {\text{ = }}2 \times {10^{{{ - }}3}}{a}{{B}_{t}}$$ {L_q} = 0.05a $时,各阶相加后的电子温度径向分布图

    Figure  6.  When $\psi {\text{ = }}2 \times {10^{{{ - }}3}}{a}{{B}_{t}}$, $ {L_q} = 0.05a $, sum of each order of electron temperature radial distribution

    图  7  不同径向格点数的电子温度的等高线分布图

    Figure  7.  Contour distribution map of electron temperature with different radial grid points

    图  8  $\psi {\text{ = }}1 \times {10^{{-}4}}{a}{{B}_{t}}$${L_q} = 0.05a$时,$\log ({\chi _r}/{\chi _ \bot })$的径向分布图

    Figure  8.  When $\psi {\text{ = }}1 \times {10^{{-}4}}{a}{{B}_{t}}$, ${L_q} = 0.05a$, radial distribution diagram of $\log ({\chi _r}/{\chi _ \bot })$

    图  9  $\psi {\text{ = }}1 \times {10^{{{ - }}4}}{a}{{B}_{t}}$${L_q} = 0.05a$$\phi = 0$时磁岛在$r - \theta $平面上的磁面结构图

    Figure  9.  When $\psi {\text{ = }}1 \times {10^{{{ - }}4}}{a}{{B}_{t}}$, ${L_q} = 0.05a$, $\phi = 0$, magnetic surface structure diagram of magnetic island on $r - \theta $ plane

    图  10  $\psi {\text{ = }}1 \times {10^{{{ - }}4}}{a}{{B}_{t}}$${L_q} = 0.05a$时,各阶相加后的电子温度径向分布图

    Figure  10.  When $\psi {\text{ = }}1 \times {10^{{{ - }}4}}{a}{{B}_{t}}$, ${L_q} = 0.05a$, sum of each order of electron temperature radial distribution

    图  11  $\psi {\text{ = }}1 \times {10^{{{ - }}4}}{a}{{B}_{t}}$${L_q} = 0.05a$时,电子温度的等高线分布图

    Figure  11.  When $\psi {\text{ = }}1 \times {10^{{{ - }}4}}{a}{{B}_{t}}$, ${L_q} = 0.05a$, contour distribution map of electron temperature

    图  12  $\psi {\text{ = }}2 \times {10^{{{ - }}3}}{a}{{B}_{t}}$${L_q} = 0.3a$时,$\log ({\chi _r}/{\chi _ \bot })$的径向分布图

    Figure  12.  When $\psi {\text{ = }}2 \times {10^{{{ - }}3}}{a}{{B}_{t}}$, ${L_q} = 0.3a$, radial distribution diagram of $\log ({\chi _r}/{\chi _ \bot })$

    图  13  $\psi {\text{ = }}2 \times {10^{{{ - }}3}}{a}{{B}_{t}}$${L_q} = 0.3a$$\phi = 0$时磁岛在$r - \theta $平面上的磁面结构图

    Figure  13.  When $\psi {\text{ = }}2 \times {10^{{{ - }}3}}{a}{{B}_{t}}$, ${L_q} = 0.3a$, $\phi = 0$, magnetic surface structure diagram of magnetic island on $r - \theta $ plane

    图  14  $\psi {\text{ = }}2 \times {10^{{{ - }}3}}{a}{{B}_{t}}$${L_q} = 0.3a$时,各阶相加后的电子温度径向分布图

    Figure  14.  When $\psi {\text{ = }}2 \times {10^{{{ - }}3}}{a}{{B}_{t}}$, ${L_q} = 0.3a$, sum of each order of electron temperature radial distribution

    图  15  $\psi {\text{ = }}2 \times {10^{{{ - }}3}}{a}{{B}_{t}}$${L_q} = 0.3a$时,电子温度的等高线分布图

    Figure  15.  When $\psi {\text{ = }}2 \times {10^{{{ - }}3}}{a}{{B}_{t}}$, ${L_q} = 0.3a$, contour distribution map of electron temperature

  • [1] WESSON J, CAMPBELL D. Tokamaks [M]. Oxford: Oxford University Press, 2004.
    [2] GUNTER S, YU Q, LACKNER K. Modelling of heat transport in magnetised plasmas using non-aligned coordinates[J] . Journal Computational Journal of Computational Physics,2005,209(1):354 − 397. doi: 10.1016/j.jcp.2005.03.021
    [3] RUTHERFORD P H. Nonlinear growth of the tearing mode[J] . Physics of Fluids,1973,16(11):1903 − 1908. doi: 10.1029/GM030p0292
    [4] FITZPATRICK R. Helical temperature perturbations associated with tearing modes in tokamak plasmas[J] . Physics of Plasmas,1995,2(2):825 − 838.
    [5] FURTH H P. Prevalent instability of nonthermal plasmas[J] . Physics of Fluids,1963,6(1):48 − 57.
    [6] 王水, 李罗权. 磁场重联[M]. 合肥: 安徽教育出版社, 1999.
    [7] CHEN X L, MORRISON P J. Resistive tearing instability with equilibrium shear flow[J] . Physics of Fluids B:Plasma Physics,1990,2(3):495 − 507. doi: 10.1063/1.859339
    [8] ZWEIBEL E G, YAMADA M. Magnetic Reconnection in Astrophysical and Laboratory Plasmas[J] . Annual Review of Astronomy and Astrophysics,2009,47(1):291 − 332. doi: 10.1146/annurev-astro-082708-101726
    [9] YU Q, GÜNTER S. Modeling of the nonlinear growth of neoclassical tearing modes[J] . Physics of Plasmas,1998,5(11):3924 − 3928. doi: 10.1063/1.873112
    [10] GAROFALO A M, BURRELL K H, DEBOO J C, et al. Observation of plasma rotation driven by static nonaxisymmetric magnetic fields in a tokamak[J] . Physical Review Letters,2008,101(19):195005. doi: 10.1103/PhysRevLett.101.195005
    [11] LA Haye R J. Neoclassical tearing modes and their control[J] . Physics of Plasmas,2006,13(5). doi: 10.1063/1.2180747
    [12] IDA K, NAGAOKA K, INAGAKI S, et al. Overview of transport and MHD stability study: Focusing on the impact of magnetic field topology in the large helical device[J] . Nuclear Fusion,,2015,55(10). doi: 10.1088/0029-5515/55/10/104018
    [13] HAWRYLUK R J, BATHA S, BLANCHARD W, et al. Fusion plasma experiments on TFTR: A 20 year retrospective[J] . Physics of Plasmas,1998,5(5):1577 − 1589. doi: 10.1063/1.872825
    [14] ONO M, KAITA R. Recent progress on spherical torus research[J] . Physics of Plasmas,2015,22(4). doi: 10.1063/1.4915073
    [15] FURTH H P. Thermal equilibrium and stability of tokamak discharges[J] . Physics of Fluids,1970,13(12):3020 − 3030.
    [16] REN C, CHU M S, CALLEN J D. Magnetic island deformation due to sheared flow and viscosity[J] . Physics of Plasmas,1999,6(4):1203 − 1207. doi: 10.1063/1.873363
    [17] SCHMITZ O, EVANS T E, FENSTERMACHER M E, et al. Formation of a three-dimensional plasma boundary after decay of the plasma response to resonant magnetic perturbation fields[J] . Nuclear Fusion,2014,54(1):012001. doi: 10.1088/0029-5515/54/1/012001
    [18] KAMADA Y. Special issue: overview and summary reports from the 25th Fusion Energy Conference (St Petersburg, Russian Federation, 13−18 October 2014)[J] . Nuclear Fusion,2015,55(10):100201. doi: 10.1088/0029-5515/55/10/100201
    [19] CROMBE K, ANDREW Y, BRIX M, et al. Poloidal rotation dynamics, radial electric field, and neoclassical theory in the jet internal-transport-barrier region[J] . Physical Review Letters,2005,95(15):155003. doi: 10.1103/PhysRevLett.95.155003
    [20] 刘勇强. 局域热源对磁岛热输运的研究以及对撕裂模不稳定性影响 [D]. 上海: 东华大学, 2018.
    [21] SUCKEWER S, EUBANK H P, GOLDSTON R J, et al. Toroidal plasma rotation in the princeton large torus induced by neutral-beam injection[J] . Physical Review Letters,1979,43(3):207 − 210. doi: 10.1103/PhysRevLett.43.207
    [22] TALA T, ANDREW Y, CROMBÉ K, et al. Toroidal and poloidal momentum transport studies in JET[J] . Nuclear Fusion,2007,47(8):1012 − 1023. doi: 10.1088/0029-5515/47/8/036
    [23] 阳明, 王乐, 林文斌. 不同初始平衡磁剪切对共振磁扰动诱发的双撕裂模的影响[J] . 科技通报,2019,35(7):21 − 5,39. doi: 10.13774/j.cnki.kjtb.2019.07.005
    [24] 胡希伟. 等离子体理论基础 [M]. 北京: 北京大学出版社, 2006.
    [25] GRIERSON B A, BURRELL K H, SOLOMON W M, et al. Collisionality scaling of main-ion toroidal and poloidal rotation in low torque DIII-D plasmas[J] . Nuclear Fusion,2013,53(6):063010. doi: 10.1088/0029-5515/53/6/063010
    [26] SCOTT B D, DRAKE J F, HASSAM A B. Nonlinear stability of drift-tearing modes[J] . Physical Review Letters,1985,54(10):1027 − 1030. doi: 10.1103/PhysRevLett.54.1027
    [27] ROSENBLUTH M N. Nonlinear properties of the internal m=1 kink instability in the cylindrical tokamak[J] . Physics of Fluids,1973,16(11):1894 − 1902. doi: 10.1063/1.1694231
  • 加载中
图(15)
计量
  • 文章访问数:  109
  • HTML全文浏览量:  54
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-20
  • 刊出日期:  2024-03-30

目录

    /

    返回文章
    返回