留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于YOLOv5-SPD改进的杂草识别算法

羊智凡 李海波

羊智凡, 李海波. 基于YOLOv5-SPD改进的杂草识别算法[J]. 上海工程技术大学学报, 2024, 38(1): 75-82. doi: 10.12299/jsues.23-0037
引用本文: 羊智凡, 李海波. 基于YOLOv5-SPD改进的杂草识别算法[J]. 上海工程技术大学学报, 2024, 38(1): 75-82. doi: 10.12299/jsues.23-0037
YANG Zhifan, LI Haibo. Improved weed identification algorithm based on YOLOv5-SPD[J]. Journal of Shanghai University of Engineering Science, 2024, 38(1): 75-82. doi: 10.12299/jsues.23-0037
Citation: YANG Zhifan, LI Haibo. Improved weed identification algorithm based on YOLOv5-SPD[J]. Journal of Shanghai University of Engineering Science, 2024, 38(1): 75-82. doi: 10.12299/jsues.23-0037

基于YOLOv5-SPD改进的杂草识别算法

doi: 10.12299/jsues.23-0037
详细信息
    作者简介:

    羊智凡(1997−),男,硕士生,研究方向为计算机视觉。E-mail:2417683036@qq.com

    通讯作者:

    李海波(1978−),男,讲师,博士,研究方向为计算机视觉、机器学习。E-mail:impart@163.com

  • 中图分类号: S24;TP391.41

Improved weed identification algorithm based on YOLOv5-SPD

  • 摘要: 杂草的精确识别是实现机器代替人工除草的首要前提。初生的杂草目标小,识别难度大。YOLOv5-SPD在小目标识别上有着良好的表现,但在稳健性及准确性上还有待提高。在YOLOv5-SPD基础上加入通道注意力机制可以加强有效特征的权重值,使网络的学习更具有针对性。同时将广义交并比(GIoU)损失函数替换成完全交并比(CIoU)损失函数,可有效解决边框重合关系问题和目标框与预测框的高宽比以及中心点之间的关系,使杂草预测框更加接近真实框。杂草数据集上的试验结果表明,改进后的网络检测精度达到70.3%,准确率达到94.1%,比原来的YOLOv5-SPD分别提高4.7%和2.8%。
  • 图  1  杂草的数据增强

    Figure  1.  Data enhancement of weeds

    图  2  数据集目标框分布情况

    Figure  2.  Distribution of dataset target boxes

    图  3  YOLOv5-SPD网络结构

    Figure  3.  YOLOv5-SPD network structure

    图  4  squeeze-and-excitation注意力机制

    Figure  4.  squeeze-and-excitation attention mechanism

    图  5  GIoU图

    Figure  5.  GIoU map

    图  6  CIoU图

    Figure  6.  CIoU map

    图  7  YOLOv5-SPD-SE网络结构

    Figure  7.  YOLOv5-SPD-SE network structure

    图  8  mAP(0.5)对比

    Figure  8.  mAP (0.5) comparison

    图  9  损失函数对比

    Figure  9.  Comparison of loss functions

    图  10  杂草识别结果

    Figure  10.  Weed detection results

    表  1  不同目标检测模型性能对比

    Table  1.   Performance Comparison of different target detection models

    模型Precision/%mAP(0.5)
    /%
    Recall
    /%
    Faster R-CNN83.457.981.7
    CenterNet87.761.385.9
    YOLOv389.563.287.2
    YOLOv5-SPD91.365.689.0
    本研究改进模型94.170.393.0
    下载: 导出CSV

    表  2  采用不同策略改进的网络之间的对比

    Table  2.   Comparison between networks improved by different strategies

    网络模型SEGIoUCIoUPrecision/%mAP
    (0.5)
    /%
    Recall
    /%
    YOLOv5-SPD-GIoU × × 91.365.689
    YOLOv5-SPD-CIoU × × 93.465.890
    YOLOv5-SPD-SE-GIoU × 93.966.292
    YOLOv5-SPD-SE-CIoU × 94.170.393
    下载: 导出CSV
  • [1] HAMUDA E, MC GINLEY B, GLAVIN M, et al. Automatic crop detection under field conditions using the HSV colour space and morphological operations[J] . Computers and Electronics in Agriculture,2017,133:97 − 107. doi: 10.1016/j.compag.2016.11.021
    [2] SHARPE S M, SCHUMANN A W, BOYD N S. Goosegrass detection in strawberry and tomato using a convolutional neural network[J] . Scientific Reports,2020,10(1):9548. doi: 10.1038/s41598-020-66505-9
    [3] CHO S I, LEE D S, JEONG J Y. AE-automation and emerging technologies: Weed-plant discrimination by machine vision and artificial neural network[J] . Biosystems Engineering,2002,83(3):275 − 280. doi: 10.1006/bioe.2002.0117
    [4] 姜红花, 张传银, 张昭, 等. 基于Mask R-CNN的玉米田间杂草检测方法[J] . 农业机械学报,2020,51(6):220 − 228, 247.
    [5] 孟庆宽, 张漫, 杨晓霞, 等. 基于轻量卷积结合特征信息融合的玉米幼苗与杂草识别[J] . 农业机械学报,2020,51(12):238 − 245. doi: 10.6041/j.issn.1000-1298.2020.12.026
    [6] 东辉, 陈鑫凯, 孙浩, 等. 基于改进YOLOv4和图像处理的蔬菜田杂草检测[J] . 图学学报,2022,43(4):559 − 569.
    [7] JIAO L, ZHANG F, LIU F, et al. A survey of deep learning-based object detection[J] . IEEE Access,2019,7:128837 − 128868. doi: 10.1109/ACCESS.2019.2939201
    [8] SHIH K H, CHIU C T, LIN J A, et al. Real-time object detection with reduced region proposal network via multi-feature concatenation[J] . IEEE Transactions on Neural Networks and Learning Systems,2019,31(6):2164 − 2173.
    [9] HE K, GKIOXARI G, Dollár P, et al. Mask R-CNN[J] . IEEE Transactions on Pattern Analysis and Machine Intelligence,2018,42(2):386 − 397.
    [10] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779−788.
    [11] WANG Y, WANG C, ZHANG H, et al. Automatic ship detection based on RetinaNet using multi-resolution Gaofen-3 imagery[J] . Remote Sensing,2019,11(5):531. doi: 10.3390/rs11050531
    [12] DUAN K , BAI S , XIE L , et al. CenterNet: Keypoint Triplets for Object Detection[C]// Proceedings of International Conference on Computer Vision. Washington: IEEE Press, 2019: 6569−6578.
    [13] SUNKARA R, LUO T. No more strided convolutions or pooling: a new CNN building block for low-resolution images and small objects[C]//Proceedings of European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases. Grenoble: Springer, 2022: 443−459.
    [14] REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: A metric and a loss for bounding box regression[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 658−666.
    [15] ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: Faster and better learning for bounding box regression[C]//Proceedings of the AAAI conference on artificial intelligence. Glasgow: AAAI, 2020: 12993−13000.
    [16] JIE H, LI S, GANG S, et al. Squeeze-and-excitation networks[J] . IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,42(8):2011 − 2023.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  294
  • HTML全文浏览量:  85
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-27
  • 刊出日期:  2024-03-30

目录

    /

    返回文章
    返回