Effect of two-sphere particles on flow field structure of flat plate boundary layer
-
摘要: 为掌握边界层粒子周围的流动结构,利用粒子图层测速(PIV)技术在雷诺数为500 ~ 2000范围内,对3种不同直径、6种不同间距下的粒子周围的流场特性进行了测量. 对流场特性分析的结果表明,随着流体速度和粒子直径的增加,粒子后端的漩涡区域逐渐被增强,会形成单个漩涡、镜像对称漩涡、一大一小旋向相反漩涡3种模式. 在观测的试验粒子中,10 mm粒子后端的漩涡区域最为显著;当粒子间距增大到一定阈值后,粒子后端的漩涡区域便不再随着间距的增大而被增强. 研究结果为进一步揭开边界层粒子周围的流动结构提供了试验依据.Abstract: To comprehend the flow structures surrounding particles within the boundary layer, particle image velocimetry (PIV) technique was employed to measure the flow field characteristics around particles of three distinct diameters and six different spacings within the Reynolds number range of 500 to 2000. The analysis results of the flow field characteristics reveal that with escalating fluid velocity and particle diameter, the vortex region behind the particles progressively intensified, exhibiting three distinctive modes: a singular vortex, mirror-symmetric vortices, and large-small oppositely rotating vortices. Among the observed experimental particles, the vortex region behind 10 mm particles displayed the most pronounced characteristics. However, upon reaching a certain threshold of particle spacing, the enhancement of the vortex region behind the particles ceased with further increases in spacing. These research findings serve as experimental evidence toward further elucidating the flow structures around particles within the boundary layer.
-
Key words:
- boundary layer /
- particle image velocimetry (PIV) /
- flow characteristics /
- vortex /
- particles
-
表 1 PIV分析条件
Table 1. Analysis condition of PIV
分析条件 方向 (x,y)截面 (x,z)截面 图片分析数量 1000 1000 网格节点数 110 × 50 110 × 50 表 2 拍摄条件
Table 2. Filming conditions
相机设置 方向 (x,y)截面 (x,z)截面 帧率/(帧·s-1) 500 500 快门速度/s 1/500 1/500 图像大小 1024 × 416 1024 × 416 平均流速/(m·s-1) 0.16 , 0.21 0.16 , 0.21 图片数量 3000 3000 表 3 雷诺数
Table 3. Reynolds number
模型尺寸/mm 转速/(r·min−1) 2000 2500 4 562 737 7 983 1291 10 1405 1844 -
[1] 唐杨杨, 李志强, 邸亚超, 等. 方柱-强旋组合旋涡脱落机制研究[J] . 推进技术,2014,35(8):1023 − 1029. [2] 于定勇, 张广成, 马朝晖. 湍流场多柱体绕流形态和水动力特性研究[J] . 中国海洋大学学报(自然科学版),2016,46(6):52 − 59. [3] WANG X K, GONG K. Flow around four cylinders arranged in a square configuration[J] . Journal of Fluids and Structures,2013,43:179 − 199. doi: 10.1016/j.jfluidstructs.2013.08.011 [4] 陆雨洲, 徐庶民, 钟伟, 等. 圆盘绕流近尾迹实验研究[J] . 实验流体力学,2013,27(6):19 − 25. [5] 杨纪伟, 滕丽娟, 胥战海. 多圆柱绕流旋涡脱落和流场形态概论[J] . 人民长江,2009,40(3):66 − 68, 86. doi: 10.3969/j.issn.1001-4179.2009.03.025 [6] 许相辉, 蒋甲利, 牛中国, 等. 圆柱尾流场的Tomo-PIV测量[J] . 实验流体力学,2015,29(5):60 − 64. [7] 王勇, 郝南松, 耿子海, 等. 基于时间解析PIV的圆柱绕流尾迹特性研究[J] . 实验流体力学,2018,32(1):64 − 70. [8] 王轩, 范子椰, 陈乐天, 等. 流向凹曲率壁面湍流边界层的TRPIV实验研究[J] . 实验流体力学,2022,36(6):1 − 9. [9] 孙姣, 轩瑞祥, 高天达, 等. 湍流边界层内不同粒径颗粒行为的PIV实验研究[J] . 化学工程,2018,46(12):59 − 63. [10] RAMEZANI M, SUNA B, SUBRAMANIAMA S, et al. Detailed experimental and numerical investigation of fluid-particle interactions of a fixed train of spherical particles inside a square duct[J] . International Journal of Multiphase Flow,2018,103:16 − 29. doi: 10.1016/j.ijmultiphaseflow.2018.01.013 [11] PIOTR B J. Numerical study of the thermo-hydraulic characteristics in a circular tube with ball turbulators. Part 1: PIV experiments and a pressure drop[J] . International Journal of Heat and Mass Transfer,2014,74:48 − 59. doi: 10.1016/j.ijheatmasstransfer.2014.02.074 [12] NINO Y, GARCIA M H. Experiments on particle-turbulence interactions in the near-wall region of an open channel flow: implications for sediment transport[J] . Journal of Fluid Mechanics,2006,326:285 − 319. [13] MUAMMER O, Flow structures around an equilateral triangle arrangement of three spheres[J]. International Journal of Multiphase Flow, 2013, 53: 54-64. [14] SUMMER D, PRICE S, PAÏDOUSSIS M P. Flow-pattern identification for two staggered circular cylinders in cross-flow[J] . Journal of Fluid Mechanics,2000,411:263 − 303. doi: 10.1017/S0022112099008137