留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于无线传感器网络的室内热舒适系统设计

温健 邓胜祥

温健, 邓胜祥. 基于无线传感器网络的室内热舒适系统设计[J]. 上海工程技术大学学报, 2024, 38(3): 298-303. doi: 10.12299/jsues.23-0194
引用本文: 温健, 邓胜祥. 基于无线传感器网络的室内热舒适系统设计[J]. 上海工程技术大学学报, 2024, 38(3): 298-303. doi: 10.12299/jsues.23-0194
WEN Jian, DENG Shengxiang. Design of indoor thermal comfort system based on wireless sensor network[J]. Journal of Shanghai University of Engineering Science, 2024, 38(3): 298-303. doi: 10.12299/jsues.23-0194
Citation: WEN Jian, DENG Shengxiang. Design of indoor thermal comfort system based on wireless sensor network[J]. Journal of Shanghai University of Engineering Science, 2024, 38(3): 298-303. doi: 10.12299/jsues.23-0194

基于无线传感器网络的室内热舒适系统设计

doi: 10.12299/jsues.23-0194
基金项目: 上海市III类高峰学科—材料科学与工程(高能束智能加工与绿色制造)
详细信息
    作者简介:

    温健:温 健(1997−),男,硕士生,研究方向为综合能源管理与控制。E-mail:wenjian1888@126.com

    通讯作者:

    邓胜祥(1970−),男,教授,博士,研究方向为新能源与节能技术、可视化仿真与智能控制等。E-mail:csdsx@163.com

  • 中图分类号: TP277

Design of indoor thermal comfort system based on wireless sensor network

  • 摘要: 为实现室内环境在保持热舒适状态的同时最大限度地减少能源消耗,设计一款基于无线传感器网络和简化预测平均热感觉(PMV)指数的室内热舒适系统。该系统采用散点布置法确定室内各传感器的最佳测量节点,采集的数据通过ZigBee通信传输到系统中,在系统中通过简化PMV指数评估室内环境的热舒适感知。最后,采用具有模糊性和非线性的模糊控制调控空调的运行。结果表明,散点布置的传感器收集的数据更加稳定准确,简化PMV指数可以有效替代PMV指数评估人体热舒适感知。热舒适系统不仅可以控制室内环境处于热舒适范围,同时也起到很好的节能效果。
  • 图  1  标准PMV和简化PMVs的相关性分析图

    Figure  1.  Correlation analysis diagram of standard PMV and simplified PMVs

    图  2  集中式协同频谱传感过程

    Figure  2.  Centralized collaborative spectrum sensing process

    图  3  室内传感器位置图

    Figure  3.  Location diagram of indoor sensor

    图  4  模糊反馈控制框图

    Figure  4.  Fuzzy feedback control block diagram

    图  5  系统架构图

    Figure  5.  System architecture diagram

    图  6  简化PMV模型计算界面

    Figure  6.  Simplified PMV model calculation interface

    图  7  手动调节与系统干预耗电量对比

    Figure  7.  Comparison of power consumption between manual adjustment and system intervention

    表  1  标准PMV和简化PMVs值比较

    Table  1.   Comparison of standard and simplified PMVs values

    采集时刻计算结果
    PMVPMVs
    9:00−0.18−0.22
    10:00−0.090.02
    11:000.150.09
    12:000.190.15
    13:000.370.36
    14:000.470.44
    15:000.450.41
    16:000.320.29
    17:000.210.20
    平均值0.210.19
    标准方差0.220.24
    下载: 导出CSV
  • [1] 许立. 公共建筑以能耗数据为导向的节能管理方法探究: 评《图说公共建筑能耗的数据挖掘与模型方法》[J] . 人民长江,2022,53(6):242.
    [2] 褚俊杰, 徐伟, 霍慧敏. 间接蒸发冷却空调在近零能耗公共建筑中的应用与实测[J] . 建筑科学,2021,37(10):9 − 15, 41.
    [3] FRANCO S S, HENRIQUEZ J, OCHOA A, et al. Thermal analysis and development of PID control for electronic expansion device of vapor compression refrigeration systems[J] . Applied Thermal Engineering,2022,206:118130.
    [4] LIANG Y C, MCKEOWN A, YU Z B, et al. Experimental study on a heat driven refrigeration system based on combined organic rankine and vapour compression cycles[J] . Energy Conversion and Management,2021,234(1):113953. doi: 10.1016/j.enconman.2021.113953
    [5] 庄露萍, 陈曦, 管晓宏. 采暖通风与空调系统中冷却塔传热效率的回归模型[J] . 控制与决策,2018,33(10):1801 − 1806. doi: 10.13195/j.kzyjc.2017.0643
    [6] YANG B , WU M C, LI Z , et al. Thermal comfort and energy savings of personal comfort systems in low temperature office: A field study[J] . Energy and Buildings,2022,270:1 − 15. doi: 10.1016/j.enbuild.2022.112276
    [7] GUPTA S K, KUMAR S, TYAGI S. Energy efficient and effective node deployment for wireless sensor network[J] . International Journal of Communication Systems,2022,35(1):1 − 17. doi: 10.1002/dac.5139
    [8] LUOMALA J, HAKALA I. Adaptive range-based localization algorithm based on trilateration and reference node selection for outdoor wireless sensor networks[J] . Computer Networks,2022,210(8):108865. doi: 10.1016/j.comnet.2022.108865
    [9] ZHOU Y D, SU Y, XU Z B, et al. A hybrid physics-based/data-driven model for personalized dynamic thermal comfort in ordinary office environment[J] . Energy and Buildings,2021,238:110790. doi: 10.1016/j.enbuild.2021.110790
    [10] CHAI J L, FAN J T. Advanced thermal regulating materials and systems for energy saving and thermal comfort in buildings[J] . Materials Today Energy,2022,24:100925.
    [11] PISELLO A L, PIGLIAUTILE I, ANDARGIE M, et al. Test rooms to study human comfort in buildings: A review of controlled experiments and facilities[J] . Renewable and Sustainable Energy Reviews,2021,149:111359. doi: 10.1016/j.rser.2021.111359
    [12] RUIVO C R, Da SILVA M G, BRODAY E E. Study on thermal comfort by using an atmospheric pressure dependent predicted mean vote index[J] . Building and Environment,2021,206:108370. doi: 10.1016/j.buildenv.2021.108370
    [13] KHATOON S, KIM M H. Thermal comfort in the passenger compartment using a 3-D numerical analysis and comparison with fanger's comfort models[J] . Energies,2020,13(3):1 − 15. doi: 10.3390/en13030690
    [14] MALIK A, BONGERS C, MCBAIN B, et al. The potential for indoor fans to change air conditioning use while maintaining human thermal comfort during hot weather: an analysis of energy demand and associated greenhouse gas emissions[J] . Lancet Planet Health,2022,6(4):E301 − E309. doi: 10.1016/S2542-5196(22)00042-0
    [15] HAN H, LEE J, KIM J, et al. Thermal comfort control based on a simplified predicted mean vote index[J] . Energy Procedia,2014,61:970 − 974. doi: 10.1016/j.egypro.2014.11.1006
    [16] FAGUNDES M A R, MENDONA-TINTI I, IESCHECK A L, et al. An open-source low-cost sensor for SNR-based GNSS reflectometry: Design and long-term validation towards sea-level altimetry[J] . GPS Solutions,2021,25(73). doi: 10.1007/s10291-021-01087-1
    [17] CHANG F, LI C D. An extended looped functional approach for stability analysis of T-S fuzzy impulsive control systems[J] . International Journal of Control, Automation and Systems,2023,21(7):2409 − 2421. doi: 10.1007/s12555-022-0317-z
    [18] LANKESHWARA G, SHARMA R, YAN R F, et al. A hierarchical control scheme for residential air-conditioning loads to provide real-time market services under uncertainties[J] . Energy,2022,250(C):123796. doi: 10.1016/j.energy.2022.123796
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  44
  • HTML全文浏览量:  45
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-12
  • 网络出版日期:  2024-11-14
  • 刊出日期:  2024-09-30

目录

    /

    返回文章
    返回