留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有向网络下多智能体系统的正连边一致性

张鹏宇 章伟 胡陟

张鹏宇, 章伟, 胡陟. 有向网络下多智能体系统的正连边一致性[J]. 上海工程技术大学学报, 2024, 38(3): 321-327. doi: 10.12299/jsues.23-0197
引用本文: 张鹏宇, 章伟, 胡陟. 有向网络下多智能体系统的正连边一致性[J]. 上海工程技术大学学报, 2024, 38(3): 321-327. doi: 10.12299/jsues.23-0197
ZHANG Pengyu, ZHANG Wei, HU Zhi. Positive edge consensus of multiagent systems on directed graphs[J]. Journal of Shanghai University of Engineering Science, 2024, 38(3): 321-327. doi: 10.12299/jsues.23-0197
Citation: ZHANG Pengyu, ZHANG Wei, HU Zhi. Positive edge consensus of multiagent systems on directed graphs[J]. Journal of Shanghai University of Engineering Science, 2024, 38(3): 321-327. doi: 10.12299/jsues.23-0197

有向网络下多智能体系统的正连边一致性

doi: 10.12299/jsues.23-0197
基金项目: 国家自然科学基金资助(62003207)
详细信息
    作者简介:

    张鹏宇(1999−),男,硕士生,研究方向为多自主体协同控制。E-mail:1348442163@qq.com

    通讯作者:

    章 伟(1977−),男,教授,博士,研究方向为集群智能、多自主体协同控制、非线性状态估计等。E-mail:wizzhang@foxmail.com

  • 中图分类号: TP273

Positive edge consensus of multiagent systems on directed graphs

  • 摘要: 现有针对多智能体系统的正连边一致性问题的研究,主要集中在无向图或强连通的有向图上。将其扩展到包含生成树的有向网络,由于包含生成树的有向网络的拉普拉斯矩阵可能为复数,分析较为困难。利用正系统理论和图论给出连边系统在包含生成树的有向网络下实现正一致性的充要条件。随后对结果进一步优化,通过改进拉普拉斯矩阵特征值的界,得到只涉及节点网络边数量的充分条件。求解Riccati不等式并提出一种半正定规划算法获得该解,最后通过数值仿真验证所得结果的有效性。
  • 图  1  有向网络下节点图和线图的转化

    Figure  1.  Transformation of node graph and line graph under directed network

    图  2  包含生成树的节点图和线图的转化

    Figure  2.  Transformation of node graph and line graph containing spanning trees

    图  3  系统(7)在控制器(19)下的一致性结果

    Figure  3.  Consensus result of system (7) with controller (19)

  • [1] MU C, NI Z, SUN C, et al. Air-breathing hypersonic vehicle tracking control based on adaptive dynamic programming[J] . IEEE Transactions on Neural Networks and Learning Systems,2017,28(3):584 − 598. doi: 10.1109/TNNLS.2016.2516948
    [2] SU H S, WANG X F, LIN Z L. Flocking of multi-agents with a virtual leader[J] . IEEE Transactions on Automatic Control,2009,54(2):293 − 307. doi: 10.1109/TAC.2008.2010897
    [3] SU H S, ZHANG J X, CHEN X A. Stochastic sampling mechanism for time-varying formation of multiagent systems with multiple leaders and communication delays[J] . IEEE Transactions on Neural Networks and Learning Systems,2019,30(12):3699 − 3707. doi: 10.1109/TNNLS.2019.2891259
    [4] WU Y Q, LU R L, LI H Y, et al. Synchronization control for network systems with communication constraints[J] . IEEE Transactions on Neural Networks and Learning Systems,2019,30(10):3150 − 3160. doi: 10.1109/TNNLS.2018.2885873
    [5] YAN C H, ZHANG W, SU H S, et al. Adaptive bipartite time varying output formation control for multi-agent systems on signed directed graphs[J] . IEEE Transactions on Circuits and Systems II:Express Briefs,2022,52(9):8987 − 9000.
    [6] LI M, ZHANG W, YAN C H, et al. Observer-based bipartite formation control for MASs with external disturbances under event-triggered scheme[J] . IEEE Transactions on Circuits and Systems II:Express Briefs,2022,69(3):1178 − 1182.
    [7] JIANG P W, ZHANG W, YAN C H, et al. Fully distributed event-triggered bipartite output formation control for heterogeneous mass with directed graphs[J] . IEEE Transactions on Circuits and Systems II:Express Briefs,2023,7(60):2072 − 2076.
    [8] VALCHER M E, ZORZAN I. On the consensus of homogeneous multiagent systems with positivity constraints[J] . IEEE Transactions on Automatic Control,2017,62(10):5096 − 5110. doi: 10.1109/TAC.2017.2691305
    [9] VALCHER M E, ZORZAN I. New results on the solution of the positive consensus problem[C]//Proceedings of IEEE 55th Conference on Decision and Control. Las Vegas: IEEE, 2016: 5251 – 5256.
    [10] WANG X L, SU H S, MICHAEL Z Q, et al. Reaching non-negative edge consensus of networked dynamical systems[J] . IEEE Transactions on Cybernetics,2018,48(9):2712 − 2722. doi: 10.1109/TCYB.2017.2748990
    [11] LIU J J R, LAM J, KWOK K W. Further improvements on non-negative edge consensus of networked systems[J] . IEEE Transactions on Cybernetics,2022,52(9):9111 − 9119. doi: 10.1109/TCYB.2021.3052833
    [12] SU H S, WU H, CHEN X, et al. Positive edge consensus of complex networks[J] . IEEE Transactions on Systems, Man, and Cybernetics:Systems,2018,48(12):2242 − 2250. doi: 10.1109/TSMC.2017.2765678
    [13] SU H S, WU H, LAM J. Positive edge-consensus for nodal networks via output feedback[J] . IEEE Transactions on Automatic Control,2019,64(3):1244 − 1249. doi: 10.1109/TAC.2018.2845694
    [14] QIAN Y C, ZHANG W, JI M M, et al. Observer-based positive edge consensus for directed nodal networks[J] . IET Control Theory Applications,2020,14(2):352 − 357. doi: 10.1049/iet-cta.2019.0945
    [15] CHEN C T. Linear system theory and design[M]. Oxford: Oxford University Press, 1998.
    [16] OLFATI-SABER R, FAX J A, MURRAY R M. Consensus and cooperation in networked multi-agent systems[J] . Proceedings of the IEEE,2007,95:215 − 233. doi: 10.1109/JPROC.2006.887293
    [17] LIU J J R, KWOK K W, CUI Y K, et al. Consensus of positive networked systems on directed graphs[J] . IEEE Transactions on Neural Networks and Learning Systems,2022,33(9):4575 − 4583. doi: 10.1109/TNNLS.2021.3058184
  • 加载中
图(3)
计量
  • 文章访问数:  54
  • HTML全文浏览量:  25
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-15
  • 网络出版日期:  2024-11-14
  • 刊出日期:  2024-09-30

目录

    /

    返回文章
    返回