Study on high frequency radial electromagnetic wave of motor driven by frequency conversion
-
摘要: 采用场路耦合法对永磁同步电机高频径向电磁力特征频率产生原因和主要组成成分进行研究。通过解析法分析谐波电流的产生机理及谐波特性,并利用数值仿真对其进行验证;结合磁动势−磁导法和麦克斯韦张量法分析出高频径向电磁力特征频率的分布;对有限元计算得到的气隙磁场进行时空分解,采用麦克斯韦张量法计算磁场相互作用产生的高频径向电磁力。结果表明,变频驱动下永磁同步电机的高频径向电磁力主要是由变频器谐波电流引入的谐波磁场和定子基波磁场的相互作用产生,这对永磁同步电机的研究提供了一定的指导意义。Abstract: By using the field-route coupling method, the causes and main components of the high frequency radial electromagnetic force characteristic frequency of permanent magnet synchronous motor were studied. The generation mechanism and harmonic characteristics of harmonic current were analyzed by analytical method, and verified by numerical simulation. The characteristic frequency distribution of high frequency radial electromagnetic force was analyzed by means of the magnetomotive force permeability method and Maxwell tensor method. The air gap magnetic field obtained by finite element calculation was decomposed in time and space, and the high frequency radial electromagnetic force generated by magnetic field interaction was calculated by Maxwell tensor method. The results show that the high frequency radial electromagnetic force of PMSM driven by frequency conversion is mainly generated by the interaction between the harmonic magnetic field and the stator fundamental magnetic field introduced by the harmonic current of the frequency converter, which has certain guiding significance for the research of PMSM.
-
表 1 内置式永磁同步电机的参数
Table 1. Parameters of built-in permanent magnet synchronous motors
参数 数据 极对数P 4 定子电阻R/Ω 0.6271 d轴电感${L}_{d}$/mH 4.06 q轴电感$ {L}_{q} $/mH 8.17 永磁体磁链$ {\psi }_{f} $/$ \mathrm{W}\mathrm{b} $ 0.1998 转动惯量J/(kg·m2) 0.0168 阻尼系数B/($\rm{N}·(\rm{m}·\rm{s^{-1})^{-1}}$) 0.0114 直流电压源Ed/V 550 开关频率$ {f}_{\rm{s}} $/Hz 9000 采样周期${T}_{\mathrm{s} }$/$ \mathrm{\mu }\mathrm{s} $ 10 表 2 0阶和8阶PWM谐波径向电磁力的主要频率分布
Table 2. Main frequency distribution of radial electromagnetic force of order 0 and order 8 PWM harmonics
变频器电流
谐波频率/Hz电磁力波
空间阶次PWM谐波径向
电磁力频率/Hz$ {f_{\rm{s}}} \pm 2{f_0} $ 0,8 $ {f_{\rm{s}}} \pm {f_0} $
$ {f_{\rm{s}}} \pm 3{f_0} $$ {f_{\rm{s}}} \pm 4{f_0} $ 0,8 $ {f_{\rm{s}}} \pm 3{f_0} $
$ {f_{\rm{s}}} \pm 5{f_0} $$ 2{f_{\rm{s}}} \pm {f_0} $ 0,8 $ 2{f_{\rm{s}}} $
$ 2{f_{\rm{s}}} \pm 2{f_0} $$ 2{f_{\rm{s}}} \pm 5{f_0} $ 0,8 $ 2{f_{\rm{s}}} + 4{f_0} $
$ 2{f_{\rm{s}}} \pm 6{f_0} $$ 2{f_{\rm{s}}} \pm 7{f_0} $ 0,8 $ 2{f_{\rm{s}}} + 6{f_0} $
$ 2{f_{\rm{s}}} \pm 8{f_0} $表 3 PWM谐波径向电磁力主要成分验证
Table 3. Verification of main components of PWM harmonic radial electromagnetic force
频率/Hz PWM谐波与定子基波作用
产生电磁力幅值/Pa有限元计算
幅值/Pa百分比/
%8000 1027.05 1106.89 92.8 8400 90.26 103.03 87.6 8600 1117.31 1181.82 94.5 9200 980.37 1040.33 94.2 9600 99.59 113.00 88.1 10000 880.77 939.61 93.7 表 4 噪声频率计算值与径向电磁力频率值的比较
Table 4. Comparison of calculated noise frequency with radial electromagnetic force frequency
PWM谐波径向电磁力的
频率/Hz有限元计算电机噪声
频率/Hz误差/% 8000 7940 0.75 8400 8320 0.95 8800 8860 0.68 9200 9340 1.30 9600 9720 1.25 10000 10180 1.80 -
[1] YE W W, LIU Y Q, WU G M, et al. Design and optimization of manufacture of permanent magnet synchronous motor for new energy vehicle[J] . Energy Reports,2022,8:631 − 641. doi: 10.1016/j.egyr.2022.10.136 [2] 左曙光, 刘晓璇, 于明湖, 等. 永磁同步电机电磁振动数值预测与分析[J] . 电工技术学报,2017,32(1):159 − 167. [3] 仉志华, 董浩东, 张昊, 等. 变频软启动永磁同步电机低电压穿越能力评估方法[J] . 电力工程技术,2022,41(5):202 − 209. [4] LI Y, ZHOU J, GENG H, et al. A coupling simulation of converter field circuit for permanent magnet synchronous motor based on Simplorer and Maxwell[C]// Proceedings of IEEE International Conference on Mechatronics and Automation. Changchun: IEEE, 2018. [5] HU S, ZUO S, LIU M, et al. Modeling and analysis of radial electromagnetic force and vibroacoustic behavior in switched reluctance motors[J] . Mechanical Systems and Signal Processing,2020,142:7455 − 7466. [6] 张超, 郭辉, 袁涛, 等. 永磁同步电机转矩脉动抑制方法研究[J] . 轻工机械,2023,41(3):49 − 54. [7] LIN F, ZUO S, DENG W, et al. Modeling and analysis of electromagnetic force, vibration, and noise in permanent-magnet synchronous motor considering current harmonics[J] . IEEE Transactions on Industrial Electronics,2016,63(12):7455 − 7466. doi: 10.1109/TIE.2016.2593683 [8] 李晓华, 赵容健, 田晓彤, 等. 逆变器供电对电动汽车内置式永磁同步电机振动噪声特性影响研究[J] . 电工技术学报,2020,35(21):4455 − 4464. [9] 张超. 表贴式变频永磁同步电机谐波电流与电磁力波的分析计算[D]. 济南: 山东大学, 2020. [10] LIANG W, WANG J, LUK C K, et al. Analytical modeling of current harmonic components in PMSM drive with voltage-source inverter by SVPWM technique[J] . IEEE Transactions on Energy Conversion,2014,29(3):673 − 680. doi: 10.1109/TEC.2014.2317072 [11] 左曙光, 李凡, 胡潇睿. 考虑变频器供电影响的异步电机电磁噪声特性分析[J] . 机电一体化,2021,27(4):12 − 21. [12] DU J M, LI Y, YU Z Y, et al. Research on radial electromagnetic force and vibration response characteristics of squirrel-cage induction motor fed by PWM inverter[J] . IEEE Transactions on Applied Superconductivity,2021,31(8):1 − 4. [13] 鲍晓华, 明帅, 陈国玮, 等. 变频驱动下双斜槽转子感应电机径向电磁力特性分析[J] . 电工技术学报,2023,38(10):1 − 12. [14] 杨顺吉, 王天宝, 炊军立, 等. 基于场路耦合的永磁电机高频径向电磁力波分析[J] . 电机与控制应用,2023,50(2):24 − 35. [15] 陈国呈. PWM模式与电力电子变换技术[M]. 北京: 中国电力出版社, 2016. [16] 袁雷, 胡冰新, 魏克银, 等. 现代永磁同步电机控制原理及MATLAB仿真[M]. 北京: 北京航空航天大学出版社, 2016. [17] 肖阳, 宋金元, 屈仁浩, 等. 变频谐波对电机振动噪声特性的影响规律[J] . 电工技术学报,2021,36(12):2607 − 2615. [18] GIERAS J F, WANG C, LAI J C. Noise of polyphase electric motors[M]. Boca Raton: Taylor & Francis CRC Press, 2006: 21− 64. [19] 吴志鹏. 电动车用整数槽嵌入式永磁同步电机电磁噪声研究[D]. 上海: 同济大学, 2023. [20] DENG W, ZUO S. Noise reduction of axial-flux motors by combining various pole-arc coefficients and circumferential shifting of permanent magnets: analytical approach[J] . IET Electric Power Applications,2019,13(7):951 − 957. doi: 10.1049/iet-epa.2018.5554. [21] 李晓华, 刘成健, 梅柏杉, 等. 电动汽车IPMSM宽范围调速振动噪声源分析[J] . 中国电机工程学报,2018,38(17):5219 − 5227.