Experimental study on frosting characteristics of vertical fins
-
摘要: 冬季放置室外的空气取水装置,其冷端竖直翅片表面容易结霜。通过可视化试验,研究不同空气条件下竖直翅片表面结霜特性,为抑制翅片表面结霜提供依据。结果表明,冷表面温度影响翅片表面霜晶的形貌。在冷表面温度降低过程中,霜晶依次呈现无规则状、扇状、羽毛状和树状。设置空气相对湿度为60%,空气温度在10~25 ℃递增,翅片表面水珠冻结时间先从273 s缩短至205 s后延长至269 s,霜层生长平均速度先快后慢。设置空气温度为20 ℃,空气相对湿度在20%~80%递增,翅片表面水珠冻结时间从345 s逐渐缩短至218 s,霜层生长平均速度变快。设置空气含湿量近似相等,空气温度在10~25 ℃递增,霜层生长平均速度变慢。Abstract: In winter, the surface of the vertical fin of the cold end of the outdoor air intake device is prone to frost. Through visualization experiments, the characteristics of frost formation on the surface of vertical fins under different air conditions were studied to provide a basis for suppressing frost formation on the surface of fins. The results show that the frost crystal morphology of fin surface is affected by the cold surface temperature, and the frost crystal show irregular shape, fan shape, feather shape and tree shape in turn when the cold surface temperature decreases. When set the relative humidity of the air to 60% and increase the air temperature within the range of 10 to 25 ℃, it was found that the freezing time of water droplets on the surface of the fin was shortened from 273 to 205 s and then extended to 269 s. The average frost growth rate was first fast and then slow. When the air temperature is setted to 20 ℃ and the relative humidity of air increases within the range of 20% ~ 80%, the freezing time of water droplets on the surface of fin is gradually shortened from 345 to 218 s, and the average growth rate of frost layer is faster. The moisture content of the air is approximately equal, the air temperature increases within the range of 10 to 25 ℃, and the average growth rate of the frost layer slows down.
-
Key words:
- frost formation on fins /
- freezing time /
- frost crystal morphology /
- frost layer height
-
表 1 不同空气条件下的相变驱动力
Table 1. Driving forces of phase transformation under different air conditions
空气温度/℃ 空气相对湿度/% 相变驱动力 /(1023× J) 20 20 55 20 40 311 20 60 461 20 80 568 10 60 223 15 60 344 25 60 574 10 83 343 20 44 347 25 32 341 表 2 空气含湿量近似相等时4种试验工况
Table 2. Four experimental conditions when air moisture content is approximately equal
空气温度/℃ 空气相对湿度/% 空气含湿量/(g·kg−1) 10 83 6.32 15 60 6.35 20 44 6.38 25 32 6.29 -
[1] JONES B W, PARKER J D. Frost formation with varying environmental parameters[J] . Journal of Heat Transfer,1975,97(2):255 − 259. doi: 10.1115/1.3450350 [2] BARRON R F, HAN L S. Heat and mass transfer to a cryosurface in free convection[J] . Journal of Heat Transfer,1965,87(4):499 − 506. doi: 10.1115/1.3689144 [3] BIGURIA G, WENZEL L A. Measurement and correlation of water frost thermal conductivity and density[J] . Industrial and Engineering Chemistry Fundamentals,1970,9(1):129 − 138. doi: 10.1021/i160033a021 [4] WU X M, DAI W T, Xu W F, et al. Mesoscale investigation of frost formation on a cold surface[J] . Experimental Thermal and Fluid Science,2007,31(8):1043 − 1048. doi: 10.1016/j.expthermflusci.2006.11.002 [5] WU X M, DAI W T, SHAN X F, et al. Visual and theoretical analyses of the early stage of frost formation on cold surfaces[J] . Journal of Enhanced Heat Transfer,2007,14(3):257 − 268. doi: 10.1615/JEnhHeatTransf.v14.i3.70 [6] 许旺发, 吴晓敏, 王维城, 等. 水平冷面上霜晶生长规律的实验研究[J] . 低温工程,2003(6):41 − 46. doi: 10.3969/j.issn.1000-6516.2003.02.008 [7] LEE K S, KIN W S, LEE T H. A one-dimensional model for frost formation on a cold flat surface[J] . International Journal of Heat and Mass Transfer,1997,40(18):4359 − 4365. doi: 10.1016/S0017-9310(97)00074-4 [8] SAHIN A Z. Effective thermal conductivity of frost during the crystal growth period[J] . International Journal of Heat and Mass Transfer,2000,43(4):539 − 553. doi: 10.1016/S0017-9310(99)00162-3 [9] 张新华. 外电场对竖直冷表面上自然对流结霜过程影响的研究[D] . 北京: 北京工业大学, 2006. [10] CHENG C H, WU K H. Observations of early-stage frost formation on a cold plate in atmospheric air flow[J] . Journal of Heat Tansfer,2003,125(1):95 − 102. doi: 10.1115/1.1513576 [11] 张毅, 张冠敏, 张莉莉, 等. 空气源热泵结霜机理及除霜/抑霜技术研究进展[J] . 制冷学报,2018,39(5):10−21. doi: 10.3969/j.issn.0253-4339.2018.05.010 [12] 李栋, 陈振乾, 王鑫, 等. 冷表面霜晶演化的微观可视化观测[J] . 东南大学学报(自然科学版),2017,47(1):79−84. doi: 10.3969/j.issn.1001-0505.2017.01.015 [13] CAO L, JONES A K, SIKKA V K, et al. Anti-icing super-hydrophobic coating[J] . Langmuir,2009,25(21):12444 − 12448. doi: 10.1021/la902882b [14] 汪峰, 梁彩华, 张友法, 等. 结霜初期超疏水表面凝结液滴的自跳跃脱落及其对结霜过程的影响[J] . 东南大学学报(自然科学版),2016,46(4):757 − 762. doi: 10.3969/j.issn.1001-0505.2016.04.014 [15] 李丽艳, 刘中良, 赵玲倩, 等. 结霜初期无液核形成时的抑霜研究[J] . 工程热物理学报,2019,40(1):198 − 203. [16] 吴晓敏, 王维城. 冷面结霜初始形态的理论分析[J] . 工程热物理学报,2003,24(2):286 − 288. [17] 吴晓敏, 褚福强, 陈永根. 疏水表面结霜初期液滴生长的理论分析[J] . 化工学报,2015,66(S1):60 − 64. [18] SHENG W, LIU P P, DANG C B, et al. Review of restraint frost method on cold surface[J] . Renewable and Sustainable Energy Reviews,2017,79:806 − 813. doi: 10.1016/j.rser.2017.05.088 [19] NA B,WEBB R L. A fundamental understanding of factors affecting frost nucleation[J] . International Journal of Heat and Mass Transfer,2003,46(20):3797 − 3808. doi: 10.1016/S0017-9310(03)00194-7 [20] 周盛奇, 刘杨, 李维仲, 等. 自然对流条件下冷表面结霜的实验研究[J] . 制冷学报,2019,40(5):143 − 148. doi: 10.3969/j.issn.0253-4339.2019.05.143