留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中立型神经网络的自适应有限时间随机同步

黄畅 陈巧玉

黄畅, 陈巧玉. 中立型神经网络的自适应有限时间随机同步[J]. 上海工程技术大学学报, 2025, 39(1): 93-98. doi: 10.12299/jsues.23-0211
引用本文: 黄畅, 陈巧玉. 中立型神经网络的自适应有限时间随机同步[J]. 上海工程技术大学学报, 2025, 39(1): 93-98. doi: 10.12299/jsues.23-0211
HUANG Chang, CHEN Qiaoyu. Adaptive finite-time stochastic synchronization of neutral-type neural networks[J]. Journal of Shanghai University of Engineering Science, 2025, 39(1): 93-98. doi: 10.12299/jsues.23-0211
Citation: HUANG Chang, CHEN Qiaoyu. Adaptive finite-time stochastic synchronization of neutral-type neural networks[J]. Journal of Shanghai University of Engineering Science, 2025, 39(1): 93-98. doi: 10.12299/jsues.23-0211

中立型神经网络的自适应有限时间随机同步

doi: 10.12299/jsues.23-0211
基金项目: 国家自然科学基金(61673257)
详细信息
    作者简介:

    黄畅:黄 畅(1997 − ),男,硕士生,研究方向为神经网络动力学分析与控制。E-mail:1054052728@qq.com

    通讯作者:

    陈巧玉(1984 − ),女,副教授,博士,研究方向为复杂网络。E-mail:goodluckqiaoyu@126.com

  • 中图分类号: O175.13

Adaptive finite-time stochastic synchronization of neutral-type neural networks

  • 摘要: 研究了一类中立型时滞神经网络的自适应有限时间随机同步问题。建立具有不确定和马尔可夫跳变参数的中立型时滞神经网络,通过自适应控制策略,得到主从系统的有限时间稳定性准则。根据伊藤公式和Lyapunov稳定性理论,获得中立型神经网络有限时间同步的充分条件,并估计其同步时间。数值例子验证了该方法的可行性。
  • 图  1  马尔可夫跳变

    Figure  1.  Markovian jumping

    图  2  误差系统的状态

    Figure  2.  State of error system

  • [1] 曹娟, 任凤丽. Markov切换时滞基因调控网络的均方同步和随机无源同步[J] . 应用数学和力学,2022,43(2):198 − 206.
    [2] 廉玉波, 凌和平, 王钧斌, 等. 基于混合高斯-隐马尔可夫模型的动力电池实时热失控检测[J] . 汽车工程,2023,45(1):139 − 146.
    [3] 舒服华, 杨慧芳. 基于灰色马尔科夫模型我国非织造布产量预测[J] . 上海工程技术大学学报,2017,31(3):257 − 261. doi: 10.3969/j.issn.1009-444X.2017.03.015
    [4] 张全明, 崔晓昱, 张笑弟, 等. 计及用户不确定性的多时段耦合需求响应激励优化策略[J] . 中国电机工程学报,2022,42(24):8844 − 8854.
    [5] KOLMANOVSKII V B, NOSOV V R. Stability of functional differential equations[M] . Amsterdam: Elsevier Science Publishers, 1986.
    [6] NICULESCU S I. Delay effects on stability: a robust control approach[M] . London: Springer-Verlag, 2001.
    [7] GAO J, DAI L. Anti-periodic synchronization of Clifford-valued neutral-type recurrent neural networks with D operator[J] . IEEE Access,2022,10:9519 − 9528. doi: 10.1109/ACCESS.2022.3144486
    [8] ZHOU Z, ZHANG Z, CHEN M. Finite-time synchronization for fuzzy delayed neutral-type inertial BAM neural networks via the figure analysis approach[J] . International Journal of Fuzzy Systems,2022,24:229 − 246. doi: 10.1007/s40815-021-01132-8
    [9] CHEN H, SHI P, LIM C C. Cluster synchronization for neutral stochastic delay networks via intermittent adaptive control[J] . IEEE Transactions on Neural Networks and Learning Systems,2019,30(11):3246 − 3259. doi: 10.1109/TNNLS.2018.2890269
    [10] LI Y, ZHANG J, LU J, et al. Finite-time synchronization of complex networks with partial communication channels failure[J] . Information Sciences,2023,634:539 − 549. doi: 10.1016/j.ins.2023.03.077
    [11] WANG J L, WANG Q, WU H N, et al. Finite-time output synchronization and H∞ output synchronization of coupled neural networks with multiple output couplings[J] . IEEE Transactions on Cybernetics,2020,51(12):6041 − 6053.
    [12] LI Y X, HOU Z, CHE W W, et al. Event-based design of finite-time adaptive control of uncertain nonlinear systems[J] . IEEE Transactions on Neural Networks and Learning Systems,2021,33(8):3804 − 3813.
    [13] LIAN S, MENG W, LIN Z, et al. Adaptive attitude control of a quadrotor using fast nonsingular terminal sliding mode[J] . IEEE Transactions on Industrial Electronics,2021,69(2):1597 − 1607.
    [14] XU Y, LIU W, WU Y, et al. Finite-time synchronization of fractional-order fuzzy time-varying coupled neural networks subject to reaction-diffusion[J] . IEEE Transactions on Fuzzy Systems,2023,31(10):3423 − 3432. doi: 10.1109/TFUZZ.2023.3257100
    [15] HE J J, LIN Y Q, GE M F, et al. Adaptive finite-time cluster synchronization of neutral-type coupled neural networks with mixed delays[J] . Neurocomputing,2020,384:11 − 20. doi: 10.1016/j.neucom.2019.11.046
    [16] PAN L, CAO J. Stochastic quasi-synchronization for delayed dynamical networks via intermittent control[J] . Communications in Nonlinear Science and Numerical Simulation,2012,17(3):1332 − 1343. doi: 10.1016/j.cnsns.2011.07.010
    [17] CHEN W, JIAO L C. Finite-time stability theorem of stochastic nonlinear systems[J] . Automatica,2010,46(12):2105 − 2108. doi: 10.1016/j.automatica.2010.08.009
    [18] XU Y, WU X, WAN X, et al. Finite/fixed-time synchronization of multi-layer networks based on energy consumption estimation[J] . IEEE Transactions on Circuits and Systems I: Regular Papers,2021,68(10):4278 − 428. doi: 10.1109/TCSI.2021.3096211
  • 加载中
图(2)
计量
  • 文章访问数:  6
  • HTML全文浏览量:  4
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-06
  • 刊出日期:  2025-05-19

目录

    /

    返回文章
    返回