Improved discrete differential evolution algorithm for solving vehicle routing problem
-
摘要: 针对带容量约束的车辆路径问题易受客户位置和需求等不确定因素影响,导致最优解不可行或非最优等问题,提出一种改进的离散差分进化算法。利用贪心法构建初始解,提高初始解质量;根据整数排列特征重新设计变异算子,并对问题模型改进交叉算子,提高了算法性能;设计融合局部重定位、条件交换及最大贡献度移除机制的局部搜索策略,提高了算法的探索能力。基准测试集仿真试验表明,在33个测试算例中,改进算法能找到31个算例的最优值,较对比算法有更好的求解能力,能有效解决带容量约束的车辆路径问题。Abstract: Given that the vehicle routing problem with capacity constraints is easily influenced by uncertain factors such as customer location and demand, and leads to the infeasible or non-optimal solution, an improved discrete differential evolution algorithm was proposed. The greedy method was employed to construct the initial solution, thereby enhancing its quality of the initial solution. The mutation operator was redesigned according to the integer permutation characteristics, and the crossover operator was adapted for problem model, which improved the algorithm performance effectively. A local search strategy that incorporates local relocation, conditional exchange and a maximum contribution removal mechanism were designed, enhancing algorithm's exploration capabilities. Simulation experiments on the benchmark test set show that the improved algorithm can find the optimal value for 31 out of 33 test cases, indicating superior solution capabilities compared to other algorithms and effectively addressing the vehicle routing problem with capacity constraints.
-
表 1 基准测试集中算例的测试结果
Table 1. Test results of examples in benchmark set
算例 BKR SEGDE MDE ABC-ALNS AGGWOA IDDELS BEST DEV/% BEST DEV/% BEST DEV/% BEST DEV/% BEST DEV/% A-n32-k5 784 813 3.70 784 0.00 784 0.00 784 0.00 784 0.00 A-n33-k5 661 680 2.87 661 0.00 661 0.00 661 0.00 661 0.00 A-n33-k6 742 746 0.54 742 0.00 742 0.00 742 0.00 742 0.00 A-n34-k5 778 789 1.41 778 0.00 778 0.00 778 0.00 778 0.00 A-n36-k5 799 805 0.75 799 0.00 799 0.00 799 0.00 799 0.00 A-n37-k5 669 685 2.39 669 0.00 669 0.00 669 0.00 669 0.00 A-n37-k6 949 954 0.53 949 0.00 953 0.42 949 0.00 949 0.00 A-n38-k5 730 734 0.55 — — 730 0.00 730 0.00 730 0.00 A-n39-k6 831 852 2.53 — — 834 0.36 833 0.24 831 0.00 A-n44-k6 937 943 0.64 — — 948 1.17 937 0.00 937 0.00 A-n45-k7 1146 1203 4.97 1146 0.00 1153 0.61 1146 0.00 1146 0.00 A-n46-k7 914 935 2.30 — — 917 0.33 914 0.00 914 0.00 A-n48-k7 1073 1129 5.22 1073 0.00 1073 0.00 1073 0.00 1073 0.00 A-n53-k7 1010 — — — — 1014 0.40 1017 0.69 1016 0.59 A-n54-k7 1167 — — 1167 0.00 1174 0.60 1176 0.77 1167 0.00 A-n55-k9 1073 — — — — 1074 0.09 1074 0.09 1073 0.00 B-n31-k5 672 679 1.04 — — 672 0.00 — — 672 0.00 B-n34-k5 788 790 0.25 788 0.00 788 0.00 — — 788 0.00 B-n35-k5 955 970 1.57 955 0.00 955 0.00 — — 955 0.00 B-n38-k6 805 825 2.48 — — 805 0.00 — — 805 0.00 B-n39-k5 549 563 2.55 549 0.00 549 0.00 — — 549 0.00 B-n43-k6 742 775 4.45 742 0.00 742 0.00 — — 742 0.00 B-n44-k7 909 931 2.42 909 0.00 909 0.00 — — 909 0.00 B-n45-k5 751 755 0.53 754 0.00 751 0.00 — — 751 0.00 B-n50-k7 741 766 3.37 741 0.00 741 0.00 — — 741 0.00 B-n52-k7 747 — — 747 0.00 749 0.27 — — 748 0.13 P-n16-k8 450 451 0.22 450 0.00 450 0.00 450 0.00 450 0.00 P-n19-k2 212 213 0.47 — — 212 0.00 212 0.00 212 0.00 P-n20-k2 216 217 0.46 216 0.00 216 0.00 216 0.00 216 0.00 P-n22-k2 216 218 0.93 216 0.00 216 0.00 216 0.00 216 0.00 P-n23-k8 529 531 0.38 529 0.00 529 0.00 529 0.00 534 0.90 P-n40-k5 458 508 10.92 458 0.00 458 0.00 458 0.00 458 0.00 P-n45-k5 510 563 10.39 510 0.00 510 0.00 510 0.00 510 0.00 P-n50-k7 554 — — 554 0.00 555 0.18 554 0.00 557 0.54 表 2 随机法和贪心法对比
Table 2. Comparison between random and greedy methods
算例 随机法 贪心法 A-n32-k5 1.26 0.19 A-n34-k5 1.12 0.16 A-n45-k7 0.99 0.17 A-n54-k7 1.44 0.20 A-n61-k9 1.61 0.26 A-n65-k9 1.85 0.23 表 3 IDDE算法与DE算法对比
Table 3. Comparison between IDDE and DE algorithms
算例 DE IDDE A-n32-k5 0.19 0.10 A-n34-k5 0.15 0.04 A-n45-k7 0.19 0.05 A-n54-k7 0.22 0.06 A-n61-k9 0.25 0.09 A-n65-k9 0.23 0.10 -
[1] 张景玲, 冯勤炳, 赵燕伟, 等. 基于强化学习的超启发算法求解有容量车辆路径问题[J] . 计算机集成制造系统,2020,26(4):1118 − 1129. [2] SOUZA I P, BOERES M C S, MORAES R E N. A robust algorithm based on differential evolution with local search for the capacitated vehicle routing problem[J] . Swarm and Evolutionary Computation,2023,77:101245. doi: 10.1016/j.swevo.2023.101245 [3] 李珺, 郝丽艳, 何奕涛, 等. 求解带时间窗车辆路径优化问题的改进细菌觅食算法[J] . 计算机工程,2021,47(11):44 − 53. [4] BOUZID M C, HADDADENE H A, SALHI S. An integration of Lagrangian split and VNS: The case of the capacitated vehicle routing problem[J] . Computers & Operations Research,2017,78:513 − 525. [5] 贺智明, 郑丽, 梁文. 基于自适应动态搜索蚁群算法的车辆路径规划[J] . 计算机工程与设计, 2021, 42(2): 543 − 551. [6] 汪海, 刘升, 赵齐辉. 基于差分进化的水波优化算法[J] . 上海工程技术大学学报,2018,32(3):261 − 266. doi: 10.3969/j.issn.1009-444X.2018.03.012 [7] TEOH B E, PONNAMBALAM S G, KANAGARAJ G. Differential evolution algorithm with local search for capacitated vehicle routing problem[J] . International Journal of Bio-Inspired Computation,2015,7(5):321 − 342. doi: 10.1504/IJBIC.2015.072260 [8] SONG L, DONG Y. An improved differential evolution algorithm with local search for capacitated vehicle routing problem[C] //Proceedings of 2018 tenth International Conference on Advanced Computational Intelligence (ICACI). Xiamen: IEEE, 2018. [9] 林剑, 叶璟轩, 刘雯雯, 等. 求解带容量约束车辆路径问题的多模态差分进化算法[J] . 计算机应用,2023,43(7):2248 − 2254. [10] AHMED Z H. Adaptive sequential constructive crossover operator in a genetic algorithm for solving the traveling salesman problem[J] . International Journal of Advanced Computer Science and Applications, 2020, 11(2):943 − 958. [11] TSAI C H, LIN Y D, YANG C H, et al. A biogeography-based optimization with a greedy randomized adaptive search procedure and the 2-opt algorithm for the traveling salesman problem[J] . Sustainability,2023,15(6):5111. doi: 10.3390/su15065111 [12] WANG J, SHANG S, JING H, et al. A novel multistrategy-based differential evolution algorithm and its application[J] . Electronics,2022,11(21):3476. doi: 10.3390/electronics11213476 [13] 夏小云, 庄鹤林, 杨火根, 等. 自适应大邻域搜索的人工蜂群算法求解带容量约束车辆路径问题[J] . 计算机集成制造系统,2022,28(11):3545 − 3557. [14] 黄戈文, 蔡延光, 戚远航, 等. 自适应遗传灰狼优化算法求解带容量约束的车辆路径问题[J] . 电子学报,2019,47(12):2602 − 2610.