Fault protection measures for low-power brushless DC motor controllers in vehicles
-
摘要: 车用小功率直流无刷电机在复杂工况和恶劣环境下运行时易出现故障,而传统检测方法采用单一阈值设置,容易引发误报、漏报及过度保护等问题。提出一种车用小功率电机故障保护措施,通过软件层面设置多阈值和敏感值进行监控,同时在硬件层面进行电路图优化设计。监测试验车用电机的关键电压和电流参数,结合实时数据、经验及模型仿真,设定多个阈值及敏感值来判断车用电机的运行状态。根据不同阈值的触发条件采取相应保护措施,并搭建故障保护试验台架,对上位机接收到的信号进行分析。试验结果表明,该方法是可行且正确的。Abstract: Low-power brushless DC motor (BLDC) in vehicles is prone to failures under complex operating conditions and harsh environments, while traditional detection measures relying on a single threshold setting often lead to issues such as false alarms, missed detections, and over-protection. A fault protection measure for vehicle motors was proposed, which was monitored by setting multi-threshold and sensitive value at the software level, and optimized circuit design at the hardware level. By monitoring the key voltage and current parameters of the test vehicle motor, combined with real-time data, experience and model simulation, multiple thresholds and sensitive values were set to judge the running state of the vehicle motor. According to the triggering conditions of different thresholds, corresponding protection measures were taken, and fault protection test bench was set up to analyze the signals received by the upper computer. The results show that the measure is feasible and correct.
-
表 1 车用直流无刷电机相关参数
Table 1. Relevant parameters of vehicle DC brushless motor
序号 项目 内容 1 电机类型 BLDC 2 额定功率 40 W 4 额定电压 12 V 5 额定电流 3 A 6 额定转速 4500 r/min7 额定转矩 5 Nm 8 通信接口 PWM 9 极对数 2 10 工作温度 −40~135 ℃ 11 反电动势常数 1.1 V/(krad·s−1) 表 2 过压和欠压保护阈值和敏感值
Table 2. Overvoltage and undervoltage protection thresholds and sensitive values
序号 名称 阈值1/V 阈值2/V 敏感值/ms 保护策略 1 欠压 7.5 8.0 450 停机 2 欠压 7.9 8.6 280 重启 3 过压 16.5 17.1 550 停机 4 过压 15.5 16.0 500 重启 5 最小报错电压 6.0 7.0 — 停机 6 最大报错电压 18.0 19.0 — 停机 -
[1] 薛晓明, 杨长江. 无刷直流电机建模研究[J] . 电机与控制学报, 2009, 13(6): 874 − 878, 885. doi: 10.3969/j.issn.1007-449X.2009.06.016 [2] WU D, FENG L. On-off control of range extender in extended-range electric vehicle using bird swarm intelligence[J] . Electronics, 2019, 8(11): 1223. doi: 10.3390/electronics8111223 [3] NIAN X, PENG F, ZHANG H. Regenerative braking system of electric vehicle driven by brushless DC motor[J] . IEEE Transactions on Industrial Electronics, 2014, 61(10): 5798 − 5808. doi: 10.1109/TIE.2014.2300059 [4] YANG M J, JHOU H L, MA B Y, et al. A cost-effective method of electric brake with energy regeneration for electric vehicles[J] . IEEE Transactions on Industrial Electronics, 2009, 56(6): 2203 − 2212. doi: 10.1109/TIE.2009.2015356 [5] FANG J, LI W, LI H, et al. Online inverter fault diagnosis of buck-converter BLDC motor combinations[J] . IEEE Transactions on Power Electronics, 2014, 30(5): 2674 − 2688. [6] TRAN T V, NEGRE E. Efficient estimator of rotor temperature designing for electric and hybrid powertrain platform[J] . Electronics, 2020, 9(7): 1096. doi: 10.3390/electronics9071096 [7] TAVNER P J, PENMAN J. Currents flowing in the stator-core frames of large electricalmachines[J] . IEE Proceedings C Generation, Transmission and Distribution, 2021, 130(6): 273−277. [8] 刘博, 李晨, 阎彦, 等. 电机驱动系统故障诊断技术综述[J] . 中国电机工程学报, 2023, 43(14): 5619 − 5634. doi: 10.13334/j.0258-8013.pcsee.223151 [9] 侍文, 朱翀, 杨欢, 等. 基于二阶陷波器的三相四开关永磁同步发电系统中性点直流偏置电压抑制研究[J] . 机电工程, 2018, 35(7): 740 − 745, 766. doi: 10.3969/j.issn.1001-4551.2018.07.016 [10] 陈清泉, 孙逢春, 祝嘉光. 现代电动汽车技术[M] . 北京: 北京理工大学出版社, 1992. [11] 王淑旺, 郗世洪, 孙纯哲, 等. 电动汽车用电机控制器过电流保护方法[J] . 微特电机, 2011, 39(8): 61 − 63. doi: 10.3969/j.issn.1004-7018.2011.08.020 [12] SCHOEN R R, HABETLER T G, KAMRAN F, et al. Motor bearing damage detection using stator current monitoring [J] . IEEE Transactions on Industry Applications, 1995, 31(6): 1274−1279. [13] BLODT M GRANJON P, RAISON B, et al. Models for bearing damage detection in induction motors using stator current monitoring[J] . IEEE Transactions on Industrial Electronics, 2008, 55(4): 1813 − 1822. doi: 10.1109/TIE.2008.917108 [14] 刘桓龙, 郑忠, 伍理勋, 等. 基于热流固耦合的车用电机控制器散热特性[J] . 机床与液压, 2019, 47(13): 152 − 156. doi: 10.3969/j.issn.1001-3881.2019.13.032 [15] LIU L, TAN G, ZHOU F, et al. A study on heat dissipation of electric vehicle motor based on heat-pipe heat transfer analysis[C] //Proceedings of the SAE World Congress Experience. Detroit: SAE International, 2021. [16] XIONG S, YINGFU G, HUAN Y, et al. Reliability study of motor controller in electric vehicle by the approach of fault tree analysis[J] . Engineering Failure Analysis, 2021, 121. [17] YAN R D, DUNNETT S J, JACKSON L M. Novel methodology for optimising the design, operation and maintenanceof a multi-AGV system[J] . Reliability Engineering & System Safety, 2018, 178: 130 − 139. -