留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柴油喷射策略对氨柴油双燃料发动机性能的影响研究

陈旭 缪雪龙 郑金保 狄亚格 赵志锋 郭立新

陈旭, 缪雪龙, 郑金保, 狄亚格, 赵志锋, 郭立新. 柴油喷射策略对氨柴油双燃料发动机性能的影响研究[J]. 上海工程技术大学学报, 2024, 38(4): 355-362. doi: 10.12299/jsues.23-0271
引用本文: 陈旭, 缪雪龙, 郑金保, 狄亚格, 赵志锋, 郭立新. 柴油喷射策略对氨柴油双燃料发动机性能的影响研究[J]. 上海工程技术大学学报, 2024, 38(4): 355-362. doi: 10.12299/jsues.23-0271
CHEN Xu, MIAO Xuelong, ZHENG Jinbao, DI Yage, ZHAO Zhifeng, GUO Lixin. Study on effect of diesel injection strategy on performance of ammonia-diesel dual-fuel engine[J]. Journal of Shanghai University of Engineering Science, 2024, 38(4): 355-362. doi: 10.12299/jsues.23-0271
Citation: CHEN Xu, MIAO Xuelong, ZHENG Jinbao, DI Yage, ZHAO Zhifeng, GUO Lixin. Study on effect of diesel injection strategy on performance of ammonia-diesel dual-fuel engine[J]. Journal of Shanghai University of Engineering Science, 2024, 38(4): 355-362. doi: 10.12299/jsues.23-0271

柴油喷射策略对氨柴油双燃料发动机性能的影响研究

doi: 10.12299/jsues.23-0271
详细信息
    作者简介:

    陈旭:陈 旭(1995 – ),男,在读硕士,研究方向为无碳燃料发动机数值模拟仿真。E-mail:m310121454@sues.edu.cn

    通讯作者:

    缪雪龙(1964 – ),男,教授,博士,研究方向为无碳新能源燃料喷雾及燃烧机理。E-mail:mxlwx@sina.com

  • 中图分类号: TK46+4

Study on effect of diesel injection strategy on performance of ammonia-diesel dual-fuel engine

  • 摘要: 基于某重型柴油机,利用CONVERGE软件研究不同氨能量占比(AER)及柴油喷射策略对氨柴油双燃料发动机燃烧性能的影响,通过调整柴油喷射策略来实现发动机指示热效率的最佳值。研究表明,氨能量占比从0%增至80%,指示热效率随之下降,反应产物N2O的增加导致温室气体排放大于原柴油机的柴油燃烧模式。氨能量占比恒定为50%,在柴油单次喷射正时最佳点,指示热效率可与原柴油燃烧模式相当,同时温室气体(greenhouse gas, GHG)排放量下降19.7%,NO排放量上升41.6%。在柴油二次喷射的预、主喷正时最佳点,相对于原柴油燃烧模式,指示热效率上升1.6%,GHG排放量下降40.4%,NO排放量上升31.8%,延迟柴油二次喷射的主喷正时可有效降低NO排放量。
  • 图  1  发动机模型计算网格

    Figure  1.  Engine model calculation mesh

    图  2  不同氨能量占比下的仿真验证

    Figure  2.  Simulation validation at different AERs

    图  3  不同氨能量替代下的燃烧特性

    Figure  3.  Combustion characteristics under different AERs

    图  4  不同氨能量替代下的排放特性

    Figure  4.  Emission characteristics under different AERs

    图  5  柴油单次喷射正时提前的燃烧特性

    Figure  5.  Combustion characteristics of diesel single injection timing advance

    图  6  柴油二次喷射策略下的燃烧特性

    Figure  6.  Combustion characteristics of diesel fuel under split injection strategy

    图  7  不同柴油喷射策略下的排放特性

    Figure  7.  Emission characteristics under different diesel injection strategies

    表  1  发动机参数

    Table  1.   Engine parameters

    项目参数
    发动机模型Caterpillar3401
    缸径/mm137.2
    行程/mm165.1
    连杆长度/mm261.6
    排量/L2.44
    压缩比16.25
    进气门开启时刻/(°)−358.3
    进气门关闭时刻/(°)−169.7
    排气门开启时刻/(°)145.3
    排气门关闭时刻/(°)348.3
    下载: 导出CSV

    表  2  仿真初始边界条件

    Table  2.   Simulation initial boundary conditions

    项目参数
    进气门关时刻压力/MPa0.13
    进气门关时刻温度/K340
    活塞温度/K500
    缸壁温度/K420
    缸盖温度/K480
    涡流比0.5
    柴油喷射压力/MPa52.5
    柴油喷射角度/(°)65
    转速/(r·min−1)910
    下载: 导出CSV

    表  3  氨能量占比的参数设置

    Table  3.   Parameter settings for different AERs

    氨能量占比 /% 柴油每循环量/mg 氨每循环量/mg 过量空气系数
    0 120 0 1.72
    10 108 28 1.70
    20 96 56 1.69
    30 84 84 1.68
    40 72 112 1.66
    50 60 140 1.65
    60 48 168 1.64
    70 36 196 1.63
    80 24 224 1.62
    下载: 导出CSV

    表  4  柴油喷射策略参数设置

    Table  4.   Parameters setting of diesel injection strategies

    策略模式 预喷量占比/% 预喷正时/(°) 主喷正时/(°)
    单次喷射 0 −10、−13、−16、−19、−22、−25
    二次喷射 40 −18、−20、−25、−30、−35、−40、−45、−48、−50 −10
    二次喷射 40 −50 −10、−12、−14、−16 、−18
    下载: 导出CSV
  • [1] KURIEN C, MITTAL M. Review on the production and utilization of green ammonia as an alternate fuel in dual-fuel compression ignition engines[J] . Energy Conversion and Management,2022,251:114990. doi: 10.1016/j.enconman.2021.114990
    [2] REITER A J, KONG S C. Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel[J] . Fuel,2011,90(1):87 − 97. doi: 10.1016/j.fuel.2010.07.055
    [3] NIKI Y, NITTA Y, SEKIGUCHI H, et al. Diesel fuel multiple injection effects on emission characteristics of diesel engine mixed ammonia gas into intake air[J] . Journal of Engineering for Gas Turbines and Power: Transactions of the ASME,2019,141(6). DOI: 10.1115/1.4042507.
    [4] YOUSEFI A, GUO H S, DEV S, et al. Effects of ammonia energy fraction and diesel injection timing on combustion and emissions of an ammonia/diesel dual-fuel engine[J] . Fuel,2022,314:122723. doi: 10.1016/j.fuel.2021.122723
    [5] YOUSEFI A, GUO H, DEV S, et al. A study on split diesel injection on thermal efficiency and emissions of an ammonia/diesel dual-fuel engine[J] . Fuel,2022,316:123412. doi: 10.1016/j.fuel.2022.123412
    [6] LI T, ZHOU X, WANG N, et al. A comparison between low- and high-pressure injection dual-fuel modes of diesel-pilot-ignition ammonia combustion engines[J] . Journal of the Energy Institute,2022,102:362 − 373. doi: 10.1016/j.joei.2022.04.009
    [7] WANG B, YANG C, WANG H, et al. Effect of Diesel-Ignited Ammonia/Hydrogen mixture fuel combustion on engine combustion and emission performance[J] . Fuel,2023,331:125865. doi: 10.1016/j.fuel.2022.125865
    [8] 刘海峰, 宋腾达, 黄志雄, 等. 氨/柴油燃烧模型构建及低速机性能优化[J] . 内燃机学报,2023,41(5):395 − 403.
    [9] 崔磊, 王怀印. 船用氨燃料低速机缸内燃烧的数值模拟研究[J] . 工程热物理学报,2023,44(11):3151 − 3159.
    [10] FRASSOLDATI A, D'ERRICO G, LUCCHINI T, et al. Reduced kinetic mechanisms of diesel fuel surrogate for engine CFD simulations[J] . Combustion and Flame,2015,162(10):3991 − 4007. doi: 10.1016/j.combustflame.2015.07.039
    [11] OTOMO J, KOSHI M, MITSUMORI T, et al. Chemical kinetic modeling of ammonia oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion[J] . International Journal of Hydrogen Energy,2018,43(5):3004 − 3014. doi: 10.1016/j.ijhydene.2017.12.066
    [12] HAN Z, REITZ R D. Turbulence modeling of internal combustion engines using RNG κ-ε models[J] . Combustion Science and Technology, 1995, 106(4/5/6): 267 − 295. doi: 10.1080/00102209508907782
    [13] AMSDEN A A, O'ROURKE P J, BUTLER T. D. A computer program for chemically reactive flows with sprays[J] . NASA STI/Recon Technical Report N, 1989, 89: 27975.
    [14] BEALE J C, REITZ R D. Modeling spray atomization with the Kelvin-Helmholtz/Rayleigh-Taylor hybrid model [J] . Atomization and Sprays, 1999, 9(6): 623−650.
    [15] SCHMIDT D P, RUTLAND C J. A new droplet collision algorithm[J] . Journal of Computational Physics,2000,164(1):62 − 80. doi: 10.1006/jcph.2000.6568
    [16] O'ROURKE P J, AMSDEN A A. A Spray/Wall Interaction Submodel for the KIVA-3 Wall Film Model[J] . SAE Transactions,2000,109:281 − 298.
    [17] JIN S, WU B, ZI Z, et al. Effects of fuel injection strategy and ammonia energy ratio on combustion and emissions of ammonia-diesel dual-fuel engine[J] . Fuel,2023,341:127668. doi: 10.1016/j.fuel.2023.127668
    [18] HAN X L, LUBRANO L M, KONNOV A A. An experimental and kinetic modeling study on the laminar burning velocity of NH3 + N2O + air flames[J] . Combustion and Flame,2021,228:13 − 28. doi: 10.1016/j.combustflame.2021.01.027
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  12
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-28
  • 刊出日期:  2024-12-31

目录

    /

    返回文章
    返回