留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于条件生成式对抗网络的高质量动态实时渲染方法

江李铠 王国中 赵海武

江李铠, 王国中, 赵海武. 基于条件生成式对抗网络的高质量动态实时渲染方法[J]. 上海工程技术大学学报, 2024, 38(4): 451-457. doi: 10.12299/jsues.24-0015
引用本文: 江李铠, 王国中, 赵海武. 基于条件生成式对抗网络的高质量动态实时渲染方法[J]. 上海工程技术大学学报, 2024, 38(4): 451-457. doi: 10.12299/jsues.24-0015
JIANG Likai, WANG Guozhong, ZHAO Haiwu. High-quality dynamic real-time rendering method based on conditional generative adversarial networks[J]. Journal of Shanghai University of Engineering Science, 2024, 38(4): 451-457. doi: 10.12299/jsues.24-0015
Citation: JIANG Likai, WANG Guozhong, ZHAO Haiwu. High-quality dynamic real-time rendering method based on conditional generative adversarial networks[J]. Journal of Shanghai University of Engineering Science, 2024, 38(4): 451-457. doi: 10.12299/jsues.24-0015

基于条件生成式对抗网络的高质量动态实时渲染方法

doi: 10.12299/jsues.24-0015
详细信息
    作者简介:

    江李铠(1997 − ),男,硕士生,研究方向为计算机图形学。E-mail:1055207634@qq.com

    通讯作者:

    王国中(1962 − ),男,教授,博士,研究方向为视频处理,视频编解码。E-mail:wanggz@sues.edu.cn

  • 中图分类号: TP391.9

High-quality dynamic real-time rendering method based on conditional generative adversarial networks

  • 摘要: 聚焦计算机图形学中的实时渲染挑战,通过结合光栅化技术和优化后的条件生成式对抗网络(conditional generative adversarial networks, CGANs),实现实时生成近似光线追踪图像,解决现有研究中生成的帧与帧之间不连贯的问题,实现实时性、真实感和视觉连贯性之间的优化平衡。基于Pix2PixGAN架构,对CGANs进行结构、数据输入和损失函数方面的改进,并利用Unity和Blender构建一套训练渲染数据集。结果表明,本研究提出的渲染方法在关键性能指标上优于传统方法,显著提升了图像生成的质量以及帧与帧之间的连贯性。
  • 图  1  光栅化与光线追渲染结果对比

    Figure  1.  Rasterization versus ray tracing

    图  2  训练输入数据图集

    Figure  2.  Training input data set

    图  3  数据集关键帧

    Figure  3.  Data set keyframe

    图  4  通道整合图

    Figure  4.  Channel integration diagram

    图  5  生成器架构图

    Figure  5.  Generator schema diagram

    图  6  生成器与判别器损失图

    Figure  6.  Loss diagram of generator and discriminator

    图  7  不同网络模型生成的连续帧

    Figure  7.  Continuous frames generated by different network models

    图  8  LSTM层引入前后的连续帧对比

    Figure  8.  Sequential frame comparison before and after LSTM layer introduction

    图  9  主观帧对连续性评价

    Figure  9.  Subjective frame-to-frame continuity evaluation

    图  10  渲染质量对比

    Figure  10.  Render quality comparison

    表  1  帧间差异度量指标

    Table  1.   Frame-to-frame difference metric

    方法 SSIM 光流误差 MSE
    RTGANs 0.96 0.02 5
    Pix2PixGANs 0.90 0.08 11
    CycleGANs 0.84 0.20 30
    下载: 导出CSV

    表  2  渲染质量评估结果

    Table  2.   Rendering quality assessment results

    渲染方法 渲染时间/s L1 L2 SSIM FID VIF
    光栅化 0.04 0.15 0.06 0.85 45 0.70
    光线追踪 5.20 0 0 1.00 0 1.00
    RTGANs 0.08 0.10 0.04 0.93 25 0.85
    屏幕空间技术 0.15 0.13 0.05 0.88 35 0.75
    下载: 导出CSV
  • [1] GOODFELLOW I, et al. Generative adversarial networks[J] . Communications of the ACM,2020,63(11):139 − 144. doi: 10.1145/3422622
    [2] VASILAKIS A A, VARDIS K, PAPAIOANNOU G. A survey of multifragment rendering[J] . Computer Graphics Forum, 2020, 39(2): 623−642. DOI: 10.1111/cgf.14019.
    [3] TAN P. Phong reflectance model[C] //IKEUCHI K. Computer vision. Boston: Springer, 2020: 1−3.
    [4] WANG Z J. Implementation of shading techniques based on OpenGL[J] . Applied Mechanics and Materials,2014,577:1038 − 1042. doi: 10.4028/www.scientific.net/AMM.577.1038
    [5] LAURITZEN A. Deferred rendering for current and future rendering pipelines[EB/OL] . https://software.intel.com/en-us/articles/deferred-rendering-for-current-and-future-rendering-pipelines.
    [6] BEUG A P. Screen space reflection techniques[D] . Regina: Faculty of Graduate Studies and Research, University of Regina, 2020.
    [7] DONG Y Z, PENG C. Multi-GPU multi-display rendering of extremely large 3D environments[J] . The Visual Computer,2023,39(12):6473 − 6489. doi: 10.1007/s00371-022-02740-7
    [8] DUTRÉ P, BALA K, BEKAERT P, et al. Advanced global illumination[M] . Boca Raton: CRC Press, 2018.
    [9] MÜLLER T, ROUSSELLE F, NOVÁK J, et al. Real-time neural radiance caching for path tracing[J] . ACM Transactions on Graphics (TOG),2021,40(4):1 − 16.
    [10] HU J, YIP M K , ALONSO G E, et al. Efficient real-time dynamic diffuse global illumination using signed distance fields[J] . The Visual Computer,2021,37:2539 − 2551. doi: 10.1007/s00371-021-02197-0
    [11] OUYANG Y, LIU S Q, KETTUNEN M, et al. ReSTIR GI: Path resampling for real-time path tracing[J] . Computer Graphics Forum, 2021,40(8): 17−29.
    [12] XIE F, MISHCHUK P, HUNT W, et al. Real time cluster path tracing[C] //Proceedings of SIGGRAPH Asia 2021 Technical Communications. Tokyo: SIGGRAPH, 2021: 1−4.
    [13] IGLESIAS GUITIÁN J A, MANE P S, MOON B, et al. Real-time denoising of volumetric path tracing for direct volume rendering[J] . IEEE Transactions on Visualization and Computer Graphics,2022,28(7):1 − 15.
    [14] HUO Y, YOON S E. A survey on deep learning-based Monte Carlo denoising[J] . Computational Visual Media,2021,7(2):169 − 185. doi: 10.1007/s41095-021-0209-9
    [15] MARA M, MCGUIRE M, NOWROUZEZAHRAI D, et al. Deep G-buffers for stable global illumination approximation[J] . IEEE Transactions on Visualization and Computer Graphics,2017,24(4):1408 − 1421.
    [16] ABBAS F, MALAH M, BABAHENINI M C. Approximating global illumination with ambient occlusion and environment light via generative adversarial networks[J] . Pattern Recognition Letters,2023,166:209 − 217. doi: 10.1016/j.patrec.2022.12.007
    [17] WANG Q, ZHONG Z Z, HUO Y C, et al. State of the art on deep learning-enhanced rendering methods[J] . Machine Intelligence Research,2023,20(6):799 − 821. doi: 10.1007/s11633-022-1400-x
    [18] GOMES T, ESTEVAO L, DE TOLEDO R, et al. A survey of glsl examples[C] //Proceedings of the 25th SIBGRAPI Conference on Graphics, Patterns and Images Tutorials. Ouro Preto: IEEE, 2012: 60−73.
    [19] RATH A, GRITTMANN P, HERHOLZ S, et al. EARS: Efficiency-aware Russian roulette and splitting[J] . ACM Transactions on Graphics (TOG),2022,41(4):1 − 14.
    [20] TANG H, XU D, YAN Y, et al. Multi-channel attention selection gans for guided image-to-image translation[J] . IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,45(5):6055 − 6071.
    [21] ISOLA P, ZHU J Y, ZHOU T H, et al. Pix2Pix gan for image-to-image translation[EB/OL] . (2016-11-21)[2023-12-15] . https://arxiv.org/abs/1611.07004.
    [22] STAUDEMEYER R C, MORRIS E R. Understanding LSTM: A tutorial into long short-term memory recurrent neural networks[J] . arXiv, 2019. DOI: 10.48550/arXiv.1909.09586.
    [23] PAN Z, YU W J, WANG B S, et al. Loss functions of generative adversarial networks (GANs): Opportunities and challenges[J] . IEEE Transactions on Emerging Topics in Computational Intelligence,2020,4(4):500 − 522. doi: 10.1109/TETCI.2020.2991774
    [24] LI M, HSU W, XIE X D, et al. SACNN: Self-attention convolutional neural network for low-dose CT denoising with self-supervised perceptual loss network[J] . IEEE Transactions on Medical Imaging,2020,39(7):2289 − 2301. doi: 10.1109/TMI.2020.2968472
    [25] XU J, LI Z, DU B, et al. Reluplex made more practical: Leaky ReLU[C] //Proceedings of 2020 IEEE Symposium on Computers and Communications (ISCC). Rennes: IEEE, 2020: 1−7.
    [26] KINGMA D P, BA J. Adam: A method for stochastic optimization[C] //Proceedings of the 3rd International Conference on Learning Representations. San Diego: ICLR, 2014. DOI: 10.48550/arXiv.1412.6980.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  11
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-15
  • 刊出日期:  2024-12-31

目录

    /

    返回文章
    返回