Analysis and prediction of temperature distribution of steel trusses for kilometer-scale rail-cum-road bridge
-
摘要: 基于某千米级公铁两用桥温度观测结果,研究主梁钢桁架不同位置在不同季节下的温度分布特征,得到千米级公铁两用桥的时空温度场特性。基于结构和大气温度变化特性,对千米级公铁两用桥温度场进行全面分析,并通过3种神经网络预测模型对比找出最适合桥梁温度数据精准预测的模型。结果表明:钢桁架的温度场存在显著的时间及空间差异性,主梁温度明显滞后于大气温度,LSTM和CNN神经网络可以对温度数据进行较高精度的预测。Abstract: Based on the temperature observation of a kilometer-scale rail-cum-road bridge, temperature distribution characteristics of main girder steel trusses at different locations in different seasons were investigated, and the temporal and spatial temperature field characteristics of the kilometer-scale rail-cum-road bridge were obtained. Based on variation characteristics of the structure and atmospheric temperature, a comprehensive analysis of temperature field of a kilometer-scale rail-cum-road bridge was conducted. The most suitable model for accurate prediction of bridge temperature data was found by comparing three neural network prediction models. The results show that the temperature field of steel trusses have significant difference in time and space; the temperature of main girder rises more slowly than atmospheric temperature; LSTM and CNN neural networks can predict the temperature data with high accuracy.
-
Key words:
- bridge engineering /
- steel truss /
- temperature distribution /
- temperature prediction /
- neural network
-
表 1 夏季和冬季钢桁架顶板测点温度日统计参数
Table 1. Daily statistical parameters of temperatures at the top plate of steel truss in summer and winter
℃ 季节 传感器 最大值 最小值 平均值 温差 夏季 WD-08-19 50.2 27.0 36.1 23.2 WD-08-21 49.5 28.2 37.9 21.3 WD-08-23 47.0 27.1 37.5 19.9 WD-08-24 42.9 25.4 33.7 17.5 冬季 WD-08-19 19.0 6.2 10.8 12.8 WD-08-21 17.0 6.2 10.2 10.8 WD-08-23 14.3 4.6 9.4 9.7 WD-08-24 12.6 4.5 8.5 8.1 表 2 夏季和冬季钢桁架底板测点温度日统计参数
Table 2. Daily statistical parameters of temperatures at the bottom plate of steel truss in summer and winter
℃ 季节 传感器 最大值 最小值 平均值 温差 夏季 WD-08-14 35.2 30.0 32.6 2.6 WD-08-12 35.0 29.6 32.3 2.7 WD-08-07 34.8 29.5 32.1 2.7 WD-08-09 34.1 29.2 31.7 2.4 冬季 WD-08-14 35.2 30.0 32.6 2.6 WD-08-12 35.0 29.6 32.3 2.7 WD-08-07 34.8 29.5 32.1 2.7 WD-08-09 34.1 29.2 31.7 2.4 表 3 3种模型预测精度
Table 3. Predictive accuracy of three models
预测模型 MAE值 RMSE值 LSTM神经网络 0.015 0.026 CNN 0.016 0.028 BPNN 0.066 0.114 -
[1] 白勇哲. 大跨度连续梁桥温度荷载作用下的挠度控制研究[D] . 邯郸: 河北工程大学, 2018. [2] 周云, 郑佳缘, 郝官旺, 等. 基于气象大数据的大跨桥梁温度效应预测方法[J/OL] . 湖南大学学报(自然科学版): 1−13[2024-03-02] . http://kns.cnki.net/kcms/detail/43.1061.N.20230517.1825.003.html. [3] 戴公连, 张强强, 葛浩, 等. 基于积分变换法的混凝土箱梁温度场研究[J] . 华中科技大学学报(自然科学版),2021,49(11):77 − 82. [4] 孙君, 李爱群, 丁幼亮. 润扬长江大桥钢箱梁的温度分布监测与分析[J] . 公路交通科技,2009,26(8):94 − 98. doi: 10.3969/j.issn.1002-0268.2009.08.019 [5] 刘颖. 大跨桁拱组合体系桥梁温度场及温度效应研究[D] . 石家庄: 石家庄铁道大学, 2022. [6] 郑德志. 跨海斜拉桥钢箱梁日照温度场模拟及温度效应研究[D] . 西安: 长安大学, 2022. [7] LIU H, DING Y L, ZHAO H W, et al. Deep learning-based recovery method for missing structural temperature data using LSTM network[J] . Structural Monitoring and Maintenance,2020,7(2):109 − 124. [8] 张浩, 刘丁一, 赵维刚, 等. 公铁两用钢桁梁温度场边界条件及分布研究[J] . 中国铁道科学,2023,44(3):91 − 101. doi: 10.3969/j.issn.1001-4632.2023.03.10 [9] 唐良, 边祖光, 赵银飞, 等. Matlab在桥梁监测数据预处理中的应用[J] . 低温建筑技术,2021,43(7):104 − 108. [10] 周广东, 丁幼亮, 李爱群, 等. 基于长期实测数据的大跨悬索桥扁平钢箱梁温差特性研究[J] . 土木工程学报,2012,45(5):114 − 125. [11] 王高新, 丁幼亮. 京沪铁路钢桁拱桥温差特性的长期监测与分析[J] . 中南大学学报(自然科学版),2018,49(12):3040 − 3050. [12] 周兴林. 大跨度斜拉桥温度场与温度效应分析[D] . 昆明: 昆明理工大学, 2020.