留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米流体微量润滑加工Ti6Al4V的流场和传热机理研究

卢琨 吴淑晶 张诚 王大中

卢琨, 吴淑晶, 张诚, 王大中. 纳米流体微量润滑加工Ti6Al4V的流场和传热机理研究[J]. 上海工程技术大学学报, 2025, 39(1): 99-105. doi: 10.12299/jsues.24-0030
引用本文: 卢琨, 吴淑晶, 张诚, 王大中. 纳米流体微量润滑加工Ti6Al4V的流场和传热机理研究[J]. 上海工程技术大学学报, 2025, 39(1): 99-105. doi: 10.12299/jsues.24-0030
LU Kun, WU Shujing, ZHANG Cheng, WANG Dazhong. Study on flow field and heat transfer mechanism of nanofluid minimal quantity lubrication machining for Ti6Al4V[J]. Journal of Shanghai University of Engineering Science, 2025, 39(1): 99-105. doi: 10.12299/jsues.24-0030
Citation: LU Kun, WU Shujing, ZHANG Cheng, WANG Dazhong. Study on flow field and heat transfer mechanism of nanofluid minimal quantity lubrication machining for Ti6Al4V[J]. Journal of Shanghai University of Engineering Science, 2025, 39(1): 99-105. doi: 10.12299/jsues.24-0030

纳米流体微量润滑加工Ti6Al4V的流场和传热机理研究

doi: 10.12299/jsues.24-0030
基金项目: 国家自然科学基金面上项目(5217541),上海市自然科学基金(23ZR1425600)
详细信息
    作者简介:

    卢琨:卢 琨(1995 − ),男,硕士生,研究方向为流体微量润滑加工。E-mail:lukun0v587@163.com

    通讯作者:

    吴淑晶(1968 − ),女,教授,博士,研究方向为复合材料智能制造。E-mail:wushujing168@126.com

  • 中图分类号: TG456

Study on flow field and heat transfer mechanism of nanofluid minimal quantity lubrication machining for Ti6Al4V

  • 摘要: 在微量润滑(MQL)基础油中添加氧化铝(Al2O3)纳米颗粒形成纳米流体微量润滑(NMQL),采用NMQL加工可以进一步改善摩擦学状态,提高工件加工表面质量。建立三维计算流体动力学(CFD)模型并进行模拟分析,开展NMQL加工Ti6Al4V过程中的流场和传热机理研究。对CFD模型开展不同流量和入口压力等参数交叉分析,探讨不同冷却条件下NMQL对切削热的影响规律及最佳工艺参数的选择原则。进行湍流两相流和传热的有限元分析,总结在MQL基础油中添加 Al2O3)纳米颗粒对刀具表面温度分布的影响规律。研究结果表明,刀具的平均温度随着Al2O3纳米粒子质量分数的增加呈现降低趋势,刀尖附近最高温度平均降幅约为6%,有效改善了切削区域的温度分布状态。在纳米流体微量润滑加工Ti6Al4V的流场和传热方面进行探索,可为Ti6Al4V等难加工材料的加工方式和加工机理研究提供借鉴。
  • 图  1  三维计算流体动力学模型

    Figure  1.  3D computational fluid dynamic model

    图  2  加热壁面区域

    Figure  2.  Area of heating wall

    图  3  模型网格划分

    Figure  3.  Model grid division

    图  4  切削液中w(Al2O3)对刀具温度分布的影响

    Figure  4.  Effect of w(Al2O3) in cutting fluid on tool temperature distribution

    图  5  前刀面温度分布

    Figure  5.  Temperature distribution of front cutting surface

    图  6  w(Al2O3)对湍流强度的影响规律

    Figure  6.  Influence of w(Al2O3) on turbulence intensity

    图  7  w(Al2O3)对湍流强度的影响对比

    Figure  7.  Effect comparison of w(Al2O3) on turbulence intensity

    表  1  基础油的性质参数

    Table  1.   MQL base oil properties

    ρbf/
    (kg·m−3)
    Cbf/
    (J·(kg·K)−1)
    Kbf/
    (W·(m·K)−1)
    μbf/
    (kg·ms−1)
    92016700.580.066
    下载: 导出CSV

    表  2  Al2O3纳米粒子的性质参数

    Table  2.   Al2O3 nanoparticle properties

    ρp/(kg·m−3 Cp/(J·(kg·K)−1 Kp/(W·(m·K)−1
    3800 800 30
    下载: 导出CSV

    表  3  纳米流体雾的性质参数

    Table  3.   Properties of nanofluids’ mist

    参数 w(Al2O3)=0.5% w(Al2O3)=1% w(Al2O3)=1.5%
    ρmist /(kg·m−3) 414.14 418.70 421.33
    µmist/((N·s)·m−2) 0.0318 0.0325 0.0343
    Kmist/(W·(m·K)−1) 0.5645 0.5774 0.5902
    Cmist/(J·(kg·K)−1) 1441.32 1570.18 1703.21
    下载: 导出CSV
  • [1] 陈德雄 , 佘青青 , 李哲 , 等. 钛合金超声振动辅助切削研究进展[J] . 精密成形工程,2020,12(5):151 − 158.
    [2] YANG S C, HE C S, ZHENG M L. A prediction model for titanium alloy surface roughness when milling with micro-textured ball-end cutters at different workpiece inclination angles[J] . The International Journal of Advanced Manufacturing Technology,2019,100(5/6/7/8):2115 − 2122. doi: 10.1007/s00170-018-2852-6
    [3] 李宝栋, 唐林虎, 易湘斌, 等. 基于响应面分析法的Ti-6Al-2Sn-4Zr-2Mo钛合金切削温度仿真研究[J] . 化工机械,2019,46(3):300 − 303.
    [4] 黎宇嘉, 黄兵, 鲁娟, 等. 基于有限元模拟的Ti6Al4V铣削过程参数多目标优化[J] . 中国机械工程,2021,32(13):1555 − 1561.
    [5] 王大中, 吴淑晶, 林靖朋, 等. 基于MQL 的超声椭圆振动微切削Inconel718 的机理研究[J] . 机械工程学报,2021,57(9):264 − 272.
    [6] WU W T, LI C H, YANG M, et al. Specific energy and G ratio of grinding cemented carbide under different cooling and lubrication conditions[J] . The International Journal of Advanced Manufacturing Technology,2019,105(1/2/3/4):67 − 82.
    [7] YANG M, LI C, ZHANG Y, et al. Research on microscale skull grinding temperature field under different cooling conditions[J] . Applied Thermal Engineering,2017,126:525 − 537. doi: 10.1016/j.applthermaleng.2017.07.183
    [8] 王晓铭, 李长河, 张彦彬, 等. 微量润滑赋能雾化与供给系统关键技术研究进展[J] . 表面技术,2022,51(9):1 − 14.
    [9] 杨简彰, 王成勇, 袁尧辉, 等. 微量润滑复合增效技术及其应用研究进展[J] . 中国机械工程,2022,33(5):506 − 528.
    [10] 宋宇翔, 许芝令, 李长河, 等. 纳米生物润滑剂微量润滑磨削性能研究进展[J] . 表面技术,2023,52(12):1 − 19.
    [11] KHANNA N, SHAH P, SARIKAYA M, et al. Energy consumption and ecological analysis of sustainable and conventional cutting fluid strategies in machining 15-5 PHSS[J] . Sustainable Materials and Technologies,2022,32:e00416. doi: 10.1016/j.susmat.2022.e00416
    [12] JAMIL M, HE N, GUPTA M K, et al. Tool wear mechanisms and its influence on machining tribology of face milled titanium alloy under sustainable hybrid lubri-cooling[J] . Tribology International,2022,170:107497. doi: 10.1016/j.triboint.2022.107497
    [13] AN Q, LIU Z, JIANG L, et al. Experimental and numerical research on the effects of minimum quantity lubrication in thread turning of free-cutting steel AISI 1215[J] . Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,2015,229(5):878 − 885. doi: 10.1177/0954405414534429
    [14] 隋孟华, 张乃庆, 李长河, 等. 纳米流体微量润滑磨削硬质合金温度场模型与实验验证[J] . 制造技术与机床,2020,3:85 − 91.
    [15] NAJIHA M S, RAHMAN M M. A computational fluid dynamics analysis of single and three nozzles minimum quantity lubricant flow for milling[J] . International Journal of Automotive and Mechanical Engineering,2014,10:1891 − 1900. doi: 10.15282/ijame.10.2014.6.0157
    [16] VAZQUEZ E, KEMMOKU D T, NORITOMI P Y, et al. Computer fluid dynamics analysis for efficient cooling and lubrication conditions in micromilling of Ti6Al4V alloy[J] . Materials and Manufacturing Processes,2014,29(11/12):1494 − 1501. doi: 10.1080/10426914.2014.941864
    [17] KIM S H, LEE S W, HAN S, et al. Numerical investigation of thermal characteristics of spray cooling with minimum quantity lubrication in milling process[J] . Applied Mathematical Modelling, 2019, 65: 137−147.
    [18] ZHU G, YUAN S, CHEN B. Numerical and experimental optimizations of nozzle distance in minimum quantity lubrication (MQL) milling process[J] . The International Journal of Advanced Manufacturing Technology,2019,101:565 − 578. doi: 10.1007/s00170-018-2928-3
    [19] PENG R, ZHAO L F, TANG X, et al. Heat transfer performance assessment of abrasive phyllotaxy arrangement in internal cooling grinding[J] . International Journal of Heat and Mass Transfer, 2022, 197: 123317.
    [20] DOE J, SMITH A, JOHNSON M, et al. Numerical CFD-FEM model for machining titanium Ti-6Al-4V with nano minimum quantity lubrication: a step towards digital twin[J] . Journal of Manufacturing Processes, 2023, 66: 123−145.
    [21] 文华. 基于CFD的柴油机喷雾混合过程的多维数值模拟[D] . 武汉: 华中科技大学, 2004.
    [22] KLEINSTREUER C, FENG Y. Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review[J] . Nanoscale Research Letters,2011,6:1 − 13.
    [23] PAK B C, CHO Y I. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles[J] . Experimental Heat Transfer an International Journal,1998,11(2):151 − 170. doi: 10.1080/08916159808946559
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  7
  • HTML全文浏览量:  6
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-29
  • 刊出日期:  2025-05-19

目录

    /

    返回文章
    返回