Analysis of competition and cooperation between airlines and OTA platforms based on evolutionary game theory
-
摘要: 以航企与在线旅游代理(online travel agency, OTA)平台在竞争与合作过程中的策略选择为研究对象,建立演化博弈模型,利用复制动态方程与雅可比矩阵研究其策略选择的演化趋势。以中国东方航空(简称东航)与OTA平台携程为例,使用Matlab演化博弈仿真工具,研究不同参数变化对双方策略选择的影响。结果显示,东航采取“提直降代”,OTA平台采取“退守酒店、租赁产业”是双方演化博弈的稳定均衡策略。Abstract: To investigate the strategy choice between airlines and online travel agency (OTA) platforms within a competitive-cooperative context, an evolutionary game model was constructed. The replication dynamic equation and Jacobian matrix applied to explore the evolutionary trajectory of their strategies. Taking China Eastern Airlines and the OTA platform Ctrip as a case study, the impact of varying parameters on the strategies of both sides was examined through Matlab based evolutionary game simulation method. Research shows that the stable equilibrium result of evolutionary game is that China Eastern Airlines will adopt the strategy of "increasing direct sales and reducing agency sales", while the OTA platform will adopt the strategy of "retreating to the hotel and leasing industry".
-
Key words:
- airlines /
- online travel agency (OTA) platform /
- evolutionary game
-
表 1 博弈模型中的相关参变量及其含义
Table 1. Relevant parameters and variables in game model
名称 含义 名称 含义 R 航企客运营业收入 C OTA平台代理收入 F 航企初始成本 D OTA平台初始成本 L 航企采取策略时增加的成本 S 平台采取策略后住宿预订增加的收入 B 航企采取策略时的收益 Ce 平台不采取策略时减少的代理收入 α 航企采取策略时收益的损失系数 ζ 平台采取策略时广告等带来收益增长率 β 平台采取策略后航企代理费增长率 γ 平台采取策略时住宿预订带来收益增长率 注:为符合实际意义,参数α、β、γ、ζ的取值范围均为[0,1]。 表 2 航企和OTA平台策略博弈收益矩阵
Table 2. Profit matrix of strategy game between airlines and OTA platforms
博弈主体 OTA平台 采取“退守酒店、租赁产业” 不采取“退守酒店、租赁产业” 航企 采取“提直降代”策略 $ R - F - L - (C - {C_{\mathrm{e}}}) + (1 - \alpha )B $ $ R - F - (C - {C_{\mathrm{e}}}) + (1 - \alpha )B $ $ (1+\zeta)\left[C+(1+\gamma)S-C_{\mathrm{e}}-D\right] $ $ C - {C_{\mathrm{e}}} - D + S $ 不采取“提直降代”策略 $ R - F - (1 + \beta )C $ $ R - F - C $ $ (1 + \zeta )[(1 + \beta )C + (1 + \gamma )S - D] $ $ C - D + S $ 表 3 均衡点对应的矩阵行列式和迹的表达式
Table 3. Expressions of matrix determinants and traces corresponding to equilibrium points
均衡点 Det J TrJ E1(0,0) $ [C_{\mathrm{\mathrm{e}}}+(1-\alpha)B]\left\{\beta C+\gamma S+\zeta[(1+\beta)C+(1+\gamma)S-D]\right\} $ $ \left\{\beta C+\gamma S+\zeta[(1+\beta)C+(1+\gamma)S-D]\right\} $$ + [{C_{\mathrm{e}}} + (1 - \alpha )B] $ E2(0,1) $ -[C\mathrm{_{\mathrm{\mathrm{e}}}}+(1-\alpha)B]\left\{\gamma S+C\mathrm{_{\mathrm{\mathrm{e}}}}+\zeta[C+(1+\gamma)S-D]\right\} $ $ \left\{\gamma S+C_{\mathrm{e}}+\zeta[C+(1+\gamma)S-D]\right\} $$ - [{C_{\mathrm{e}}} + (1 - \alpha )B] $ E3(1,0) $ -\left\{\beta C+\gamma S+\zeta[(1+\beta)C+(1+\gamma)S-D]\right\} $$ [{C_{\mathrm{e}}} + (1 - \alpha )B - L + \beta C] $ $ -\left\{\beta C+\gamma S+\zeta[(1+\beta)C+(1+\gamma)S-D]\right\} $$ + [{C_{\mathrm{e}}} + (1 - \alpha )B] $ E4(1,1) $ [C\mathrm{_{\mathrm{e}}}+(1-\alpha)B-L+\beta C]\left\{\gamma S+C_{\mathrm{\mathrm{e}}}+\zeta[C+(1+\gamma)S-D]\right\} $ $ -\left\{\gamma S+C\mathrm{_{\mathrm{e}}}+\zeta[C+(1+\gamma)S-D]\right\} $$ - [{C_{\mathrm{e}}} + (1 - \alpha )B - L + \beta C] $ E5(x0,y0) $ -x_0y_0(1-x_0)(1-y_0)(\beta C-L)\left[C_{\mathrm{e}}-(1+\zeta)\beta C\right] $ 0 表 4 关键参变量取值
Table 4. Values of key parameters and variables
单位:亿元 R F B D L C S Ce α β γ ζ 959.70 824.10 10.85 74.81 57.34 64.14 61.61 10.85 0.81 0.42 0.47 0.10 -
[1] 常铮, 俞昕, 江文, 等. 关于航空公司“提直降代”问题的思考[J] . 民航管理, 2016(2): 29 − 34. [2] KOO B, MANTIN B, O’CONNOR P. Online distribution of airline tickets: should airlines adopt a single or a multi-channel approach?[J] . Tourism Management, 2011, 32(1): 69 − 74. doi: 10.1016/j.tourman.2009.11.008 [3] 杨远卓. “提直降代”对机票分销链营业利润影响的分析[J] . 空运商务, 2019(6): 40 − 44. doi: 10.3969/j.issn.1671-3095.2019.06.023 [4] 张子豪. 航空公司销售策略与渠道优化研究[D] . 合肥: 中国科学技术大学, 2021. [5] FRIEDMAN D. Evolutionary games in economics[J] . Econometrica, 1991, 59(3): 637 − 666. doi: 10.2307/2938222 [6] 艾佳妃. 基于演化博弈的高铁与民航市场策略研究[D] . 成都: 西南交通大学, 2020. [7] 王子晗. 动态激励下互联网外卖平台与外卖员互动策略演化博弈分析[D] . 北京: 北京外国语大学, 2022. [8] 李琼, 王磊. 制造业与物流业联动各方在信息协同中的演化博弈分析[J] . 系统工程, 2024, 42(5): 52 − 64. [9] SAMPLE C, ALLEN B. The limits of weak selection and large population size in evolutionary game theory[J] . Journal of Mathematical Biology, 2017, 75(5): 1285 − 1317. doi: 10.1007/s00285-017-1119-4 [10] BAI Z, HUANG M X, BIAN S, et al. A study of taxi service mode choice based on evolutionary game theory[J] . Journal of Advanced Transportation, 2019, 2019: 8607942. -
下载: