Analysis of offshore floating photovoltaic motion power generation based on digital fusion
-
摘要: 相比陆基式光伏发电系统,海上漂浮式光伏系统发电耦合了运动特征,输出功率呈现复杂随机性。为获取海上漂浮式光伏系统的发电运动特征,提出一种“一次测量三层融合”的数字化方法,即利用运动、环境、组件和发电数据表征系统耦合因素,通过测量获取运动数据,依次实现运动到环境、环境到组件、组件到发电的三层数据融合,并通过搭建实验系统,验证数字融合方法的有效性。结果表明,与实测数据相比,融合方法的最大偏差为1.11 W,最大相对偏差为1%。相较于静态时,运动造成系统整体功率减少1.14 W,降低5.06%;功率最大减少3.27 W,最大降低13.30%,为提高海上漂浮式光伏发电效率提供了有效途径。Abstract: Compared with land-based photovoltaic (PV) power generation systems, offshore floating PV systems are coupled with motion characteristics, so the output power displays complex randomness. To obtain the motion characteristics of offshore floating PV power generation, a digital method "one measurement and three-layer fusion" was proposed. Data regarding motion, environment, components, and power generation were utilized to characterize the systems' coupling factors. Motion data were acquired through measurement, and data fusion was sequentially realized from motion to environment, environment to components, and components to power generation. Finally, an experimental system was constructed to validate the method. The results indicate that the maximum absolute deviation and relative deviation between the fusion data and the data from measurement were 1.11 W and 1%, respectively. Moreover, compared with the static state, the motion leads to an overall power reduction of 1.14 W (5.06%), with a maximum reduction of 3.27 W (13.30%). This method offers an effective approach to improve the efficiency of offshore floating PV power generation.
-
表 1 数字融合关键参数
Table 1. Key parameters of digital fusion
N(t) S(t) X[M(t)] [i j] Δt/s ${\left[ \begin{gathered} 1000{\text{ }} \\ {\text{25}} \\ \end{gathered} \right]^{\text{T}}}$ ${\left[ \begin{gathered} 3.86 \\ {\text{2}}{\text{.409e-7}} \\ {\text{0}}{\text{.01}} \\ {\text{83}}{\text{.1}} \\ {\text{1}}{\text{.31}} \\ \end{gathered} \right]^{\text{T}}}$ $\left[ \begin{gathered} 0 \\ {\text{0}} \\ {\text{90}} \\ \end{gathered} \right]$ $\left[ {1{\text{ }}2} \right]$ 0.001 K q/C EG/eV b k 0.004 1.6×10−19 1.12 0.22 1.38×10−23 -
[1] 许康, 卢胜强, 沈明, 等. 海洋环境在线监测系统在漂浮式光伏电站的应用[J] . 化工管理, 2023(31): 120 − 123. [2] CHOI S M, PARK C D, CHO S H, et al. Effects of various inlet angle of wind and wave loads on floating photovoltaic system considering stress distributions[J] . Journal of Cleaner Production, 2023, 387: 135876. doi: 10.1016/j.jclepro.2023.135876 [3] RAHAMAN A, CHAMBERS T L, FEKIH A, et al. Floating photovoltaic module temperature estimation: modeling and comparison[J] . Renewable Energy, 2023, 208: 162 − 180. doi: 10.1016/j.renene.2023.03.076 [4] 廖东进, 方晓敏, 黄志平. 光伏组件辐照度增益研究[J] . 太阳能学报, 2022, 43(5): 113 − 118. [5] PENG L L, LIU B, ZHENG S B, et al. A new dynamic 2D fusion model and output characteristic analysis of floating photovoltaic modules considering motion and environmental factors[J] . Energy Conversion and Management, 2023, 294: 117588. doi: 10.1016/j.enconman.2023.117588 [6] BUGEJA R, STAGNO L M, BRANCHE N. The effect of wave response motion on the insolation on offshore photovoltaic installations[J] . Solar Energy Advances, 2021, 1: 100008. doi: 10.1016/j.seja.2021.100008 [7] YAO W X, KONG X R, XU A, et al. New models for the influence of rainwater on the performance of photovoltaic modules under different rainfall conditions[J] . Renewable and Sustainable Energy Reviews, 2023, 173: 113119. doi: 10.1016/j.rser.2022.113119 [8] 彭乐乐, 张亚飞, 张玮东, 等. 多源异构信息融合光伏组件输出特性动态建模[J] . 太阳能学报, 2023, 44(3): 425 − 434. [9] 竺德, 卢一相, 孙冬, 等. 内积运算的几何化教学探索[J] . 电脑知识与技术, 2023, 19(19): 16 − 19. [10] 万炳才, 蒋谦. 基于惯性导航原理的电缆排管检测系统设计[J] . 电力与能源, 2022, 43(6): 485 − 489. [11] GUP X W, SUN Y M, WANG Q J, et al. Attitude measurement of permanent magnet spherical motors based on adaptive mahony complementary filtering[J] . Measurement, 2023, 222: 113608. doi: 10.1016/j.measurement.2023.113608 [12] 彭乐乐, 张雯柏, 郑树彬, 等. 一种环境变化下的高效率光伏组件最大功率点跟踪方法[J] . 太阳能学报, 2019, 40(5): 1262 − 1266. [13] 李培兴, 彭乐乐, 张慧玲, 等. 基于多传感器信息融合的太阳电池动态建模[J] . 太阳能学报, 2022, 43(8): 108 − 115. [14] CLAUS R, LÓPEZ M. Key issues in the design of floating photovoltaic structures for the marine environment[J] . Renewable and Sustainable Energy Reviews, 2022, 164: 112502. doi: 10.1016/j.rser.2022.112502 [15] SHI W, YAN C J, REN Z R, et al. Review on the development of marine floating photovoltaic systems[J] . Ocean Engineering, 2023, 286: 115560. doi: 10.1016/j.oceaneng.2023.115560 [16] ZHOU W, GAO Q, XIANG L J. Inductive–capacitive combined power transfer system and its power superposition characteristic for rail transit inspection vehicle charging[J] . Measurement, 2021, 185: 110022. doi: 10.1016/j.measurement.2021.110022 -
下载: