留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

包裹光束环形部分对中心光丝传输的影响

许虎 徐广 王兆强 陈曦 卢晨晖

许虎, 徐广, 王兆强, 陈曦, 卢晨晖. 包裹光束环形部分对中心光丝传输的影响[J]. 上海工程技术大学学报, 2025, 39(2): 229-235. doi: 10.12299/jsues.24-0075
引用本文: 许虎, 徐广, 王兆强, 陈曦, 卢晨晖. 包裹光束环形部分对中心光丝传输的影响[J]. 上海工程技术大学学报, 2025, 39(2): 229-235. doi: 10.12299/jsues.24-0075
XU Hu, XU Guang, WANG Zhaoqiang, CHEN Xi, LU Chenhui. Influence of annular portion of wrapped beam on propagation of central filament[J]. Journal of Shanghai University of Engineering Science, 2025, 39(2): 229-235. doi: 10.12299/jsues.24-0075
Citation: XU Hu, XU Guang, WANG Zhaoqiang, CHEN Xi, LU Chenhui. Influence of annular portion of wrapped beam on propagation of central filament[J]. Journal of Shanghai University of Engineering Science, 2025, 39(2): 229-235. doi: 10.12299/jsues.24-0075

包裹光束环形部分对中心光丝传输的影响

doi: 10.12299/jsues.24-0075
基金项目: 国家自然科学基金(11604205)
详细信息
    作者简介:

    许虎:许 虎(1993 − ),男,硕士生,研究方向为超快激光成丝传输特性。E-mail:m10121141@sues.edu.cn

    通讯作者:

    卢晨晖(1986 − ),男,副教授,博士,研究方向为激光传输和太赫兹技术。E-mail:chlu@sues.edu.cn

  • 中图分类号: O437

Influence of annular portion of wrapped beam on propagation of central filament

  • 摘要: 光丝是超快激光应用的关键因素,促进光丝的远距离传输能够极大地开拓其应用前景。包裹光束能具有显著促进光丝远距离传输的特性,其环形部分在传输中发挥关键作用。基于分步傅里叶传输仿真方法,通过对比仿真实验系统地研究具有不同环形部分的包裹光束的传输特性。结果表明,输入包裹光束环形部分的能量、束腰半径和中心距离都会影响光丝的传输,通过调整其环形部分可以更好地促进激光成丝传输,进而拓展超快激光的应用领域。
  • 图  1  高斯光束和包裹光束的束腰半径、轴上光强、轴上电子密度随传输距离的变化

    Figure  1.  Variation of beam radius, on-axis light intensity and electron density with propagation distance for wrapped beams and gauss beams

    图  2  不同能量下束腰半径、轴上光强、轴上电子密度随传输距离的变化

    Figure  2.  Variation of beam radius, on-axis light intensity and electron density with propagation distance for different energy of annular parts

    图  3  不同能量下脉冲能流随传输距离的变化

    Figure  3.  Variation of pulsed energy flux with propagation distance for different energy of annular parts

    图  4  不同束腰下束腰半径、轴上光强、轴上电子密度随传输距离的变化

    Figure  4.  Variation of beam radius, on-axis light intensity and electron density with propagation distance for different radius of annular parts

    图  5  不同束腰半径下脉冲能流随传输距离的变化

    Figure  5.  Variation of pulsed energy flux with propagation distance for different waist radius of annular parts

    图  6  不同中心位置束腰半径、轴上光强、轴上电子密度随传输距离的变化

    Figure  6.  Variation of beam radius, on-axis light intensity and electron density with propagation distance for different central distance of annular parts

    图  7  不同中心位置下脉冲能流随传输距离的变化

    Figure  7.  Variation of pulsed energy flux with propagation distance for different central distance of annular parts

  • [1] BRAUN A, KORN G, LIU X, et al. Self-channeling of high-peak-power femtosecond laser pulses in air[J] . Optics Letters, 1995, 20(1): 73 − 75. doi: 10.1364/OL.20.000073
    [2] HOUARD A, WALCH P, PRODUIT T, et al. Laser-guided lightning[J] . Nature Photonics, 2023, 17(3): 231 − 235. doi: 10.1038/s41566-022-01139-z
    [3] PRODUIT T, WALCH P, HERKOMMER C, et al. The laser lightning rod project[J] . The European Physical Journal Applied Physics, 2021, 93(1): 10504. doi: 10.1051/epjap/2020200243
    [4] YUN Q J, SONG B F, PEI Y. Modeling the impact of high energy laser weapon on the mission effectiveness of unmanned combat aerial vehicles[J] . IEEE Access, 2020, 8: 32246 − 32257. doi: 10.1109/ACCESS.2020.2973492
    [5] AHMED S A, MOHSIN M, ALI S M Z. Survey and technological analysis of laser and its defense applications[J] . Defence Technology, 2021, 17(2): 583 − 592. doi: 10.1016/j.dt.2020.02.012
    [6] RAČIUKAITIS G. Ultra-short pulse lasers for microfabrication: a review[J] . IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27(6): 1100112.
    [7] LUTZ C, ROTH G L, RUNG S, et al. Efficient ultrashort pulsed laser processing by dynamic spatial light modulator beam shaping for industrial use[J] . Journal of Laser Micro/Nanoengineering, 2021, 16(1): 62 − 67.
    [8] SUN W F, WANG X K, ZHANG Y. Terahertz generation from laser-induced plasma[J] . Opto-Electronic Science, 2022, 1(8): 220003. doi: 10.29026/oes.2022.220003
    [9] OH T I, YOU Y S, JHAJJ N, et al. Intense terahertz generation in two-color laser filamentation: energy scaling with terawatt laser systems[J] . New Journal of Physics, 2013, 15(7): 075002. doi: 10.1088/1367-2630/15/7/075002
    [10] IONIN A A, KUDRYASHOV S I, MAKAROV S V, et al. Multiple filamentation of intense femtosecond laser pulses in air[J] . JETP Letters, 2009, 90(6): 423 − 427. doi: 10.1134/S0021364009180040
    [11] MÉCHAIN G, COUAIRON A, ANDRÉ Y B, et al. Long-range self-channeling of infrared laser pulses in air: a new propagation regime without ionization[J] . Applied Physics B, 2004, 79(3): 379 − 382. doi: 10.1007/s00340-004-1557-8
    [12] POLYNKIN P, KOLESIK M, ROBERTS A, et al. Generation of extended plasma channels in air using femtosecond Bessel beams[J] . Optics Express, 2008, 16(20): 15733 − 15740. doi: 10.1364/OE.16.015733
    [13] MILLS M S, KOLESIK M, CHRISTODOULIDES D N. Dressed optical filaments[J] . Optics Letters, 2013, 38(1): 25 − 27. doi: 10.1364/OL.38.000025
    [14] 马存良, 嘉明珍, 林文斌. 不同能量下环形高斯强激光光束在空气中的非线性传输[J] . 强激光与粒子束, 2016, 28(8): 081001. doi: 10.11884/HPLPB201628.151290
    [15] MA C L, JIA M Z, LIN W B, et al. Extending optical filaments of annular beams via square root spatial phase modulation[J] . Optics Communications, 2020, 458: 124828. doi: 10.1016/j.optcom.2019.124828
    [16] LÜ J Q, CHENG T Y, WANG W Y, et al. Analysis of the extension of optical filament in air based on phase-nested laser beam[J] . Optics Communications, 2022, 519: 128244. doi: 10.1016/j.optcom.2022.128244
    [17] COUAIRON A, MYSYROWICZ A. Femtosecond filamentation in transparent media[J] . Physics Reports, 2007, 441(2/4): 47 − 189.
    [18] BÉJOT P, KASPARIAN J, HENIN S, et al. Higher-order Kerr terms allow ionization-free filamentation in gases[J] . Physical Review Letters, 2010, 104(10): 103903. doi: 10.1103/PhysRevLett.104.103903
  • 加载中
图(7)
计量
  • 文章访问数:  12
  • HTML全文浏览量:  7
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-18
  • 网络出版日期:  2025-09-30
  • 刊出日期:  2025-06-30

目录

    /

    返回文章
    返回