留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于GaAs_BJT的差分负阻结构VCO设计

杜鑫威 肖曼琳 肖帅 张文煜

杜鑫威, 肖曼琳, 肖帅, 张文煜. 基于GaAs_BJT的差分负阻结构VCO设计[J]. 上海工程技术大学学报, 2025, 39(2): 223-228. doi: 10.12299/jsues.24-0079
引用本文: 杜鑫威, 肖曼琳, 肖帅, 张文煜. 基于GaAs_BJT的差分负阻结构VCO设计[J]. 上海工程技术大学学报, 2025, 39(2): 223-228. doi: 10.12299/jsues.24-0079
DU Xinwei, XIAO Manlin, XIAO Shuai, ZHANG Wenyu. Design of a differential negative resistor VCO based on GaAs_BJT[J]. Journal of Shanghai University of Engineering Science, 2025, 39(2): 223-228. doi: 10.12299/jsues.24-0079
Citation: DU Xinwei, XIAO Manlin, XIAO Shuai, ZHANG Wenyu. Design of a differential negative resistor VCO based on GaAs_BJT[J]. Journal of Shanghai University of Engineering Science, 2025, 39(2): 223-228. doi: 10.12299/jsues.24-0079

基于GaAs_BJT的差分负阻结构VCO设计

doi: 10.12299/jsues.24-0079
详细信息
    作者简介:

    杜鑫威(1999 − ),男,硕士生,研究方向为射频前端芯片研究与设计。E-mail:dxw12302021@163.com

    通讯作者:

    肖曼琳(1981 − ),女,讲师,博士,研究方向为信号与信息处理。E-mail:manlinxiao@sues.edu.cn

  • 中图分类号: TN432

Design of a differential negative resistor VCO based on GaAs_BJT

  • 摘要: 基于国产三安光电0.25 μm砷化镓(gallium arsenide, GaAs)异质结双极晶体管(heterojunction bipolar transistor, HBT)工艺,设计一款工作频率在3.8~4.0 GHz的低噪声LC-VCO。采用双极结型晶体管构成差分负阻结构设计,并使用源极电阻偏置电路提供工作电流,最后通过尾电感和大电容滤波技术改善噪声系数,并在版图设计中以微带线代替电感来达到更低的噪声系数。芯片后仿结果表明,本设计中LC-VCO调频范围为3.75~4.05 GHz,振幅为1.6 V,相位噪声在1 MHz偏移处为−118.8 dBc,压控灵敏度为43 MHz/V。
  • 图  1  H20_QEBE管芯直流工作点仿真结果

    Figure  1.  DC bias simulationt results for H20_QEBE transistor core

    图  2  源极电阻偏置电路

    Figure  2.  Source resistor biasing circuit

    图  3  $ {\text{π}} $型结构VCO

    Figure  3.  π-type structure VCO

    图  4  差分负阻小信号等效模型

    Figure  4.  Differential negative resistance small-signal equivalent model

    图  5  加入尾电路后的VCO基本电路

    Figure  5.  Basic VCO circuit after adding tail circuit

    图  6  相位噪声仿真结果

    Figure  6.  Simulation results of phase noise

    图  7  不同位置尾电感下的电路图

    Figure  7.  Circuit diagram with tail inductors at different positions

    图  8  不同位置尾电感下的相位噪声

    Figure  8.  Phase noise with different terminal inductances

    图  9  加入大电容滤波后的偏置电路

    Figure  9.  Bias circuit with large-capacitor filtering

    图  10  加入大电容滤波后的仿真结果

    Figure  10.  Simulation results with large-capacitor filtering

    图  11  设计的VCO电路原理图

    Figure  11.  Schematic of proposed VCO circuit

    图  12  整体VCO版图

    Figure  12.  Complete VCO Layout

    图  13  控制电压3 V时的瞬态波形

    Figure  13.  Transient waveform at control voltage of 3 V

    图  14  LC-VCO版图仿真输出频率

    Figure  14.  LC-VCO layout simulation output frequency

    图  15  中心频率处版图仿真相位噪声

    Figure  15.  Layout simulation of phase noise at center frequency

  • [1] XIA X X, CHEN F J, CHENG X, et al. A GaAs colpitts VCO using gm-boosting and collector-emitter cross-coupling techniques[J] . IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67(12): 2873 − 2877.
    [2] 陈志巍, 何勇畅, 毛小庆, 等. 基于GaAs HBT的低相噪压控振荡器设计[J] . 杭州电子科技大学学报(自然科学版), 2021, 41(2): 8 − 13.
    [3] WU X P, LI Y S, HUANG Z Y, et al. A Ka and V band voltage-controlled oscillator for terahertz application in GaAs with start-up relaxation[C] //Proceedings of 2022 IEEE MTT-S International Wireless Symposium (IWS). Harbin: IEEE, 2022: 1−3.
    [4] IYER M, SHANMUGANANTHAM T. GaAs FET based LNA design for WiMAX applications[C] //Proceedings of 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT). Coimbatore: IEEE, 2018: 1−5.
    [5] RAO C V N, GHODGAONKAR D K, SHARMA N. GaAs MMIC low noise amplifier with integrated high-power absorptive receive protection switch[J] . IEEE Microwave and Wireless Components Letters, 2018, 28(12): 1128 − 1130. doi: 10.1109/LMWC.2018.2877148
    [6] YANG L, YANG L A, RONG T T, et al. A five-octave broadband LNA MMIC using bandwidth enhancement and noise reduction technique[J] . IEICE Electronics Express, 2019, 16(7): 20190096. doi: 10.1587/elex.16.20190096
    [7] LI Z, YAN P, CHEN J, et al. A wide-bandwidth W-band LNA in GaAs 0.1 μm pHEMT technology[C] //Proceedings of 2020 IEEE MTT-S International Wireless Symposium (IWS). Shanghai: IEEE, 2020: 1−3.
    [8] CHEN Y M, WANG Y, CHIONG C C, et al. A 21.5-50 GHz low noise amplifier in 0.15-μm GaAs pHEMT process for radio astronomical receiver system[C] //Proceedings of 2021 IEEE Asia-Pacific Microwave Conference (APMC). Brisbane: IEEE, 2021: 7−9.
    [9] KOUKAB A. Reactive power imbalances in LC VCOs and their influence on phase-noise mechanisms[J] . IEEE Transactions on Microwave Theory and Techniques, 2011, 59(12): 3118 − 3128. doi: 10.1109/TMTT.2011.2169496
    [10] ULLAH F, LIU Y, LI Z Q, et al. A bandwidth-enhanced differential LC-Voltage Controlled Oscillator (LC-VCO) and super harmonic coupled quadrature VCO for K-band applications[J] . Electronics, 2018, 7(8): 127. doi: 10.3390/electronics7080127
    [11] CHENG X, CHEN F J, XIA X L, et al. A modified darlington-based class-C VCO with simultaneous optimization of Phase Noise/FoM in GaAs technology[J] . IEEE Microwave and Wireless Components Letters, 2020, 30(5): 500 − 503. doi: 10.1109/LMWC.2020.2983845
  • 加载中
图(15)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  10
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-19
  • 网络出版日期:  2025-09-30
  • 刊出日期:  2025-06-30

目录

    /

    返回文章
    返回