留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

互补双音圈电机推拉二维平动并联精密运动平台设计与控制

慕锐 赖磊捷

慕锐, 赖磊捷. 互补双音圈电机推拉二维平动并联精密运动平台设计与控制[J]. 上海工程技术大学学报, 2025, 39(2): 187-193. doi: 10.12299/jsues.24-0081
引用本文: 慕锐, 赖磊捷. 互补双音圈电机推拉二维平动并联精密运动平台设计与控制[J]. 上海工程技术大学学报, 2025, 39(2): 187-193. doi: 10.12299/jsues.24-0081
MU Rui, LAI Leijie. Design and control of a complementary dual voice coil motor push-pull two-dimensional translational motion parallel precision motion platform[J]. Journal of Shanghai University of Engineering Science, 2025, 39(2): 187-193. doi: 10.12299/jsues.24-0081
Citation: MU Rui, LAI Leijie. Design and control of a complementary dual voice coil motor push-pull two-dimensional translational motion parallel precision motion platform[J]. Journal of Shanghai University of Engineering Science, 2025, 39(2): 187-193. doi: 10.12299/jsues.24-0081

互补双音圈电机推拉二维平动并联精密运动平台设计与控制

doi: 10.12299/jsues.24-0081
基金项目: 国家自然科学基金重点项目(U2013211);国家自然科学基金青年科学基金项目(51605275); 上海市自然科学基金 (21ZR1426000)
详细信息
    作者简介:

    慕锐:慕 锐(2001 − ),男,硕士生,研究方向为柔性机构设计。E-mail:15370308386@163.com

    通讯作者:

    赖磊捷(1984 − ),男,副教授,博士,研究方向为微位移驱动控制、微纳制造装备。E-mail:lailj@sues.edu.cn

  • 中图分类号: TH112

Design and control of a complementary dual voice coil motor push-pull two-dimensional translational motion parallel precision motion platform

  • 摘要: 提出一种音圈电机驱动二自由度平动大行程解耦微动工作台,采用直板柔性簧片梁和复合双平行四杆机构耦合的并联双推拉机构。基于音圈电机的双推拉驱动原理及二自由度柔性机构的构型设计,利用簧片梁的受力与变形特征以及拉格朗日方程对平台的静力学和动力学特性进行建模,得到用于计算平台静刚度和固定频率的解析模型。进行有限元分析验证所建模型的合理性和准确性,并搭建平台的控制试验系统,对比单、双推拉模式的轨迹跟踪效果。结果表明,双推拉模式比单推拉模式具有更好的跟踪效果、更高的精度和更好的稳定性。所提出的互补音圈电机驱动的大行程柔性并联精密运动平台具有行程大、精度高和稳定性好的特点,适用于大行程高速精密运动场景。
  • 图  1  二维精密平台三维模型

    Figure  1.  3D model of the 2D precision platform

    图  2  柔性机构变形原理

    Figure  2.  Principle of deformation in flexible mechanism

    图  3  单簧片受力分析

    Figure  3.  Force analysis of a single leaf-spring

    图  4  静力学仿真分析结果

    Figure  4.  Results of statics simulation analysis

    图  5  模态分析结果

    Figure  5.  Modal analysis results

    图  6  定位平台整体系统

    Figure  6.  Overall system of positioning platform

    图  7  频率响应曲线

    Figure  7.  Frequency response curve

    图  8  控制框图

    Figure  8.  Control block diagram

    图  9  两方向单双模式推拉轨迹对比图

    Figure  9.  Comparison of single and double mode push-pull tracks in both directions

    图  10  两方向误差对比图

    Figure  10.  Comparison of errors in two directions

    图  11  圆轨迹对比图

    Figure  11.  Comparison of circular trajectories

    表  1  理论建模与有限元分析结果对比

    Table  1.   Results comparison between theoretical modeling and finite element analysis

    模型 X/Y方向模态/Hz 静态刚度/(N·m−1) 最大应力/MPa
    解析模型 62.77 94496.15 115.2
    有限元模型 59.88 92739.58 108.6
    误差/% 4.83 1.89 6.08
    下载: 导出CSV
  • [1] ITO S, CIGARINI F, UNGER S, et al. Flexure design for precision positioning using low-stiffness actuators[J] . IFAC-PapersOnLine, 2016, 49(21): 200 − 205. doi: 10.1016/j.ifacol.2016.10.548
    [2] ITO S, TROPPMAIR S, LINDNER B, et al. Long-range fast nanopositioner using nonlinearities of hybrid reluctance actuator for energy efficiency[J] . IEEE Transactions on Industrial Electronics, 2019, 66(4): 3051 − 3059. doi: 10.1109/TIE.2018.2842735
    [3] LI Y M, XU Q S. A totally decoupled piezo-driven XYZ flexure parallel micropositioning stage for micro/nanomanipulation[J] . IEEE Transactions on Automation Science and Engineering, 2011, 8(2): 265 − 279. doi: 10.1109/TASE.2010.2077675
    [4] PINSKIER J, SHIRINZADEH B, CLARK L, et al. Development of a 4-DOF haptic micromanipulator utilizing a hybrid parallel-serial flexure mechanism[J] . Mechatronics, 2018, 50: 55 − 68. doi: 10.1016/j.mechatronics.2018.01.007
    [5] WANG T W, LI Y Z, ZHANG Y X, et al. Design of a flexure-based parallel XY micropositioning stage with millimeter workspace and high bandwidth[J] . Sensors and Actuators A: Physical, 2021, 331(7): 112899.
    [6] LYU Z, XU Q S. Design and testing of a large-workspace XY compliant manipulator based on triple-stage parallelogram flexure[J] . Mechanism and Machine Theory, 2023, 184: 105287. doi: 10.1016/j.mechmachtheory.2023.105287
    [7] CAI K H, TIAN Y L, LIU X P, et al. Development and control methodologies for 2-DOF micro/nano positioning stage with high out-of-plane payload capacity[J] . Robotics and Computer-Integrated Manufacturing, 2019, 56: 95 − 105. doi: 10.1016/j.rcim.2018.08.007
    [8] OKYAY A, ERKORKMAZ K, KHAMESEE M B. Mechatronic design, actuator optimization, and control of a long stroke linear nano-positioner[J] . Precision Engineering, 2018, 52: 308 − 322. doi: 10.1016/j.precisioneng.2018.01.007
    [9] LIU H, LAI L J, FANG Y, et al. Push–pull large stroke flexure-based micropositioning stage driven by electromagnetic actuators with complementary double configuration[J] . Review of Scientific Instruments, 2023, 94(3): 035012. doi: 10.1063/5.0133906
    [10] XI S Z, LAI L J. Paired double parallelogram flexure mechanism clamped by corrugated beam for underconstraint elimination[J] . Review of Scientific Instruments, 2020, 91(8): 086102. doi: 10.1063/5.0003176
    [11] 陈云壮, 赖磊捷, 李朋志, 等. 全簧片式空间大行程并联柔性微定位平台及其轨迹控制[J] . 光学精密工程, 2023, 31(18): 2675 − 2686.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  15
  • HTML全文浏览量:  6
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-21
  • 网络出版日期:  2025-09-30
  • 刊出日期:  2025-06-30

目录

    /

    返回文章
    返回