留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ti-5Al-3.3Sn-3.7Zr-0.6Ta-0.5W合金在α + β两相区热变形和动态转变过程中的微观组织演变

刘宇飞 张莹 陈志英 王祥

刘宇飞, 张莹, 陈志英, 王祥. Ti-5Al-3.3Sn-3.7Zr-0.6Ta-0.5W合金在α + β两相区热变形和动态转变过程中的微观组织演变[J]. 上海工程技术大学学报, 2025, 39(2): 157-165. doi: 10.12299/jsues.24-0097
引用本文: 刘宇飞, 张莹, 陈志英, 王祥. Ti-5Al-3.3Sn-3.7Zr-0.6Ta-0.5W合金在α + β两相区热变形和动态转变过程中的微观组织演变[J]. 上海工程技术大学学报, 2025, 39(2): 157-165. doi: 10.12299/jsues.24-0097
LIU Yufei, ZHANG Ying, CHEN Zhiying, WANG Xiang. Microstructure evolution during hot deformation and dynamic transformation of Ti-5Al-3.3Sn-3.7Zr-0.6Ta-0.5W alloy in α + β two-phase region[J]. Journal of Shanghai University of Engineering Science, 2025, 39(2): 157-165. doi: 10.12299/jsues.24-0097
Citation: LIU Yufei, ZHANG Ying, CHEN Zhiying, WANG Xiang. Microstructure evolution during hot deformation and dynamic transformation of Ti-5Al-3.3Sn-3.7Zr-0.6Ta-0.5W alloy in α + β two-phase region[J]. Journal of Shanghai University of Engineering Science, 2025, 39(2): 157-165. doi: 10.12299/jsues.24-0097

Ti-5Al-3.3Sn-3.7Zr-0.6Ta-0.5W合金在α + β两相区热变形和动态转变过程中的微观组织演变

doi: 10.12299/jsues.24-0097
基金项目: 国家科技重大专项(J2019-VI-0005-0119);上海市Ⅲ类学科重点建设项目—材料科学与工程(高能束智能加工与绿色制造)
详细信息
    作者简介:

    刘宇飞(1999 − ),男,硕士生,研究方向为高温钛合金。E-mail:luyufee@163.com

    通讯作者:

    张 莹(1980 − ),女,讲师,博士,研究方向为精密塑性成形及模具、材料疲劳损伤。E-mail:jerrinzhang@163.com

  • 中图分类号: TG146.4

Microstructure evolution during hot deformation and dynamic transformation of Ti-5Al-3.3Sn-3.7Zr-0.6Ta-0.5W alloy in α + β two-phase region

  • 摘要: 采用热压缩试验和微观组织表征试验相结合的方法,探究一种新型近α型钛合金在不同变形条件下的流变行为和微观组织演变。研究发现,真实应力−应变曲线显示出峰值后应力整体下降并趋于稳定的特点,并且在高应变速率下,峰值应力较高且迅速下降。这是硬取向的α相向软取向的β相的转变导致了流变应力的快速下降,以及动态再结晶细化晶粒和动态回复对于亚晶组织中位错的排布。基于这些发现建立了动态再结晶体积分数模型。
  • 图  1  钛合金的原始显微组织

    Figure  1.  Original microstructure of titanium alloy

    图  2  热压缩过程

    Figure  2.  Thermal compression process

    图  3  在不同变形温度下Ti-5Al-3.3Sn-3.7Zr-0.6Ta-0.5W合金的真应力−应变曲线

    Figure  3.  True stress-strain curve of Ti-5Al-3.3Sn-3.7Zr-0.6Ta-0.5W alloy at various deformation temperatures

    图  4  Ti-5Al-3.3Sn-3.7Zr-0.6Ta-0.5W合金的峰值应力与变形条件之间的关系

    Figure  4.  Relationship between peak stress and deformation conditions for Ti-5Al-3.3Sn-3.7Zr-0.6Ta-0.5W alloy

    图  5  不同变形条件下的显微组织

    Figure  5.  Microstructure under different deformation conditions

    图  6  在940 ℃下显微组织的SEM图

    Figure  6.  SEM diagrams of microstructure at 940 ℃

    图  7  在0.01 s−1下显微组织的SEM图

    Figure  7.  SEM diagrams of microstructure at 0.01 s−1

    图  8  不同应变速率和变形温度的EBSD图和极图

    Figure  8.  EBSD diagrams and PF at strain rate

    图  9  不同变形温度和应变速率下晶界和KAM图

    Figure  9.  Grain boundary and KAM diagrams

    图  10  变形温度为940 ℃、应变速率为1 s−1时的EBSD

    Figure  10.  EBSD at deformation temperature of 940 ℃ and strain rate of 1 s−1

    图  11  沿CD方向加载时基面<a>和柱面<a>滑移的施密特因子分布

    Figure  11.  Distribution of Schmid factors for basal <a> slip and prismatic <a> slip along CD direction

    图  12  应变硬化速率与流变应力之间关系示意图

    Figure  12.  Schematic diagram of relationship between strain hardening rate and flow stress

    图  13  在不同热变形条件下Ti-5Al-3.3Sn-3.7Zr-0.6Ta-0.5W合金的$ \theta $-$ \sigma $曲线

    Figure  13.  $ \theta $-$ \sigma $ curve of Ti-5Al-3.3Sn-3.7Zr-0.6Ta-0.5W alloy under different hot deformation conditions

    图  14  确定Ti-5Al-3.3Sn-3.7Zr-0.6Ta-0.5W合金DRX动力学模型参数KB

    Figure  14.  Determining parameters K and B of DRX kinetic model for Ti-5Al-3.3Sn-3.7Zr-0.6Ta-0.5W alloy

    表  1  Ti-5Al-3.3Sn-3.7Zr-0.6Ta-0.5W合金化学成分

    Table  1.   Main chemical composition of Ti-5Al-3.3Sn-3.7Zr-0.6Ta-0.5W alloy

    元素 Al Zr Sn Ta W Ti
    质量分数/% 5.0 3.7 3.3 0.6 0.5 Bal.
    下载: 导出CSV
  • [1] ZHAO H, YE L Y, CHENG Q S, et al. Constitutive model and processing maps of 7055 aluminum alloy used for fasteners[J] . Materials Today Communications, 2022, 33: 104996. doi: 10.1016/j.mtcomm.2022.104996
    [2] WHITTAKER J T, HESS D P. Ductility of titanium alloy and stainless steel aerospace fasteners[J] . Journal of Failure Analysis and Prevention, 2015, 15(5): 571−575. doi: 10.1007/s11668-015-0007-8
    [3] BAI Q, LIN J G, DEAN T A, et al. Modelling of dominant softening mechanisms for Ti-6Al-4V in steady state hot forming conditions[J] . Materials Science and Engineering: A, 2013, 559: 352 − 358. doi: 10.1016/j.msea.2012.08.110
    [4] PARADKAR A, KAMAT S V, GOGIA A K, et al. Effect of Al and Nb on the trigger stress for stress-induced martensitic transformation during tensile loading in Ti–Al–Nb alloys[J] . Materials Science and Engineering: A, 2008, 487(1/2): 14 − 19.
    [5] JIANG Y Q, LIN Y C, JIANG X Y, et al. Hot tensile properties, microstructure evolution and fracture mechanisms of Ti-6Al-4V alloy with initial coarse equiaxed phases[J] . Materials Characterization, 2020, 163: 110272. doi: 10.1016/j.matchar.2020.110272
    [6] 蔡贇, 孙朝阳, 万李, 等. AZ80镁合金动态再结晶软化行为研究[J] . 金属学报, 2016, 52(9): 1123−1132.
    [7] LI A B, HUANG L J, MENG Q Y, et al. Hot working of Ti–6Al–3Mo–2Zr–0.3Si alloy with lamellar α + β starting structure using processing map[J] . Materials & Design, 2009, 30(5): 1625 − 1631.
    [8] ZHAO Z L, LIU N, XU W X, et al. Rapid dynamic transformation in the initial stage of hot deformation of a near alpha titanium alloy[J] . Materials Letters, 2021, 305: 130837. doi: 10.1016/j.matlet.2021.130837
    [9] JONAS J J, ARANAS C, FALL A, et al. Transformation softening in three titanium alloys[J] . Materials & Design, 2017, 113: 305 − 310.
    [10] JI X K, GUO B Q, JIANG F L, et al. Accelerated flow softening and dynamic transformation of Ti-6Al-4V alloy in two-phase region during hot deformation via coarsening α grain[J] . Journal of Materials Science & Technology, 2020, 36: 160 − 166.
    [11] GHOSH C, ARANAS C, JONAS J J. Dynamic transformation of deformed austenite at temperatures above the Ae3[J] . Progress in Materials Science, 2016, 82: 151 − 233. doi: 10.1016/j.pmatsci.2016.04.004
    [12] LIU H J, XUE Y, ZHANG Z M, et al. Effect of multi-pass hot deformation on flow stress and microstructure of Ti-6Al-4V titanium alloy prepared by hot isostatic pressing[J] . Procedia Manufacturing, 2020, 50: 652 − 657. doi: 10.1016/j.promfg.2020.08.117
    [13] ZHAO Z L, LI H, FU M W, et al. Effect of the initial microstructure on the deformation behavior of Ti60 titanium alloy at high temperature processing[J] . Journal of Alloys and Compounds, 2014, 617: 525 − 533. doi: 10.1016/j.jallcom.2014.08.092
    [14] PIAO R X, YANG S L, ZHU Y L, et al. Hot deformation behavior of near-α titanium alloy Ti-1100 prepared by TiH2-based powder metallurgy[J] . Rare Metal Materials and Engineering, 2020, 49(10): 3314 − 3324.
    [15] WARCHOMICKA F, POLETTI C, STOCKINGER M. Study of the hot deformation behaviour in Ti–5Al–5Mo–5V–3Cr–1Zr[J] . Materials Science and Engineering: A, 2011, 528(28): 8277 − 8285. doi: 10.1016/j.msea.2011.07.068
    [16] ZHAO E T, SUN S C, YU J R, et al. Dynamic recrystallization and silicide precipitation behavior of titanium matrix composites under different strains[J] . Transactions of Nonferrous Metals Society of China, 2021, 31(11): 3416 − 3427. doi: 10.1016/S1003-6326(21)65739-4
    [17] KANG X D, DU Z X, WANG Z, et al. Efficient access to ultrafine crystalline metastable-β titanium alloy via dual-phase recrystallization competition[J] . Journal of Materials Research and Technology, 2024, 29: 335−343. doi: 10.1016/j.jmrt.2024.01.101
    [18] GUO Y H, NIU J Z, CAO J X, et al. Relative strength of β phase stabilization by transition metals in titanium alloys: the Mo equivalent from a first principles study[J] . Materials Today Communications, 2023, 35: 106123. doi: 10.1016/j.mtcomm.2023.106123
    [19] XU S, ZHANG H M, XIAO N M, et al. Mechanisms of macrozone elimination and grain refinement of near α Ti alloy via the spheroidization of the Widmannstätten structure[J] . Acta Materialia, 2023, 260: 119339. doi: 10.1016/j.actamat.2023.119339
    [20] BALASUNDAR I, RAGHU T, KASHYAP B P. Hot working and geometric dynamic recrystallisation behaviour of a near-α titanium alloy with acicular microstructure[J] . Materials Science and Engineering: A, 2014, 600: 135 − 144. doi: 10.1016/j.msea.2014.01.088
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  16
  • HTML全文浏览量:  8
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-31
  • 网络出版日期:  2025-09-30
  • 刊出日期:  2025-06-30

目录

    /

    返回文章
    返回