Research on emergency response alertness and operational performance of subway drivers under shift system
-
摘要: 以地铁驾驶员为研究对象,通过应急处置模拟实验,探究轮班制对其应急处置绩效和警觉度的影响。研究以平均处置时长和正确率作为应急处置绩效指标,以基于SMR波的警觉度计算值和脑电平均功率占比作为脑电指标。考虑到应急处置场景的特殊性,在警觉度计算和平均功率占比中,加入了部分γ节律进行研究。研究发现,加入部分γ节律有助于评估地铁驾驶员警觉度水平的变化。结果表明:与夜出班相比,白班状态下地铁驾驶员警觉度更高,应急处置绩效更好;随着作业复杂度的提高,驾驶员应急处置绩效降低,而警觉度呈现先升高后降低的趋势。Abstract: The impact of shift system on the emergency response performance and alertness of subway drivers was investigated through simulation experiments. Emergency response performance was measured by the average response time and accuracy rate, while electroencephalogram (EEG) indicators included an alertness index calculated from SMR waves and the average EEG power ratio. Given the special nature of emergency response scenarios, partial gamma (γ) rhythms were incorporated into the calculation of both the alertness index and the average power ratio. The findings indicate that incorporating gamma-band rhythms can enhance the evaluation of changes in subway drivers' alertness levels. Drivers on the day shift exhibited higher alertness and better emergency response performance than those on the night shift. As task complexity increased, emergency response performance declined. Meanwhile alertness showed an trend, initially rising before subsequently falling.
-
Key words:
- electroencephalogram (EEG) /
- emergency response performance /
- alertness /
- shift system
-
表 1 不同复杂度的排故任务
Table 1. Troubleshooting faults of different complexities
任务复杂度 任务名称 任务操作骤数 低复杂度任务 缸压力高于 5 bar(1 bar= 105 Pa)
低于6 bar,空压机不工作12 中复杂度任务 切门允许开关门 18 高复杂度任务 列车停下后,全列车门无法打开 33 -
[1] 王鹏. 复杂动态监控任务工作负荷的Petri网建模理论及方法研究[D] . 北京: 北京交通大学, 2019. [2] MAGHSOUDIPOUR M, MORADI R, MOGHIMI S, et al. Time of day, time of sleep, and time on task effects on sleepiness and cognitive performance of bus drivers[J] . Sleep and Breathing, 2022, 26(4): 1759 − 1769. doi: 10.1007/s11325-021-02526-6 [3] 汤志华. 基于脑电的警觉度检测方法研究及应用[D] . 天津: 河北工业大学, 2017. [4] MARDI Z, ASHTIANI S N M, MIKAILI M. EEG-based drowsiness detection for safe driving using chaotic features and statistical tests[J] . Journal of Medical Signals & Sensors, 2011, 1(2): 130 − 137. [5] 周晶晶, 叶继伦, 张旭, 等. 脑电信号分析方法及其应用[J] . 中国医疗器械杂志, 2020, 44(2): 122−126. [6] 范晓丽, 赵朝义, 罗虹, 等. 基于事件相关电位的脑力疲劳评价方法研究[J] . 人类工效学, 2018, 24(5): 1 − 10. [7] 李建泮. 睡眠剥夺者的脑电微状态分析及识别研究[D] . 兰州: 兰州理工大学, 2021. [8] LIU S, HAO X Y, LIU X Y, et al. Sensorimotor rhythm neurofeedback training relieves anxiety in healthy people[J] . Cognitive Neurodynamics, 2022, 16(3): 531 − 544. doi: 10.1007/s11571-021-09732-8 [9] PÉREZ-ELVIRA R, OLTRA-CUCARELLA J, CARROBLES J A, et al. Enhancing the effects of neurofeedback training: the motivational value of the reinforcers[J] . Brain Sciences, 2021, 11(4): 457. doi: 10.3390/brainsci11040457 [10] 卢才武, 徐晓慧, 高睿阳, 等. 热湿环境下矿工注意力对应急决策影响的脑电研究[J] . 安全与环境学报, 2023, 23(10): 3641 − 3647. [11] PIRONDINI E, COSCIA M, MINGUILLON J, et al. EEG topographies provide subject-specific correlates of motor control[J] . Scientific Reports, 2017, 7(1): 13229. doi: 10.1038/s41598-017-13482-1 -
下载: