留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

雨刮−风窗摩擦噪声声−固耦合分析

黄志超 王岩松 袁涛 刘宁宁

黄志超, 王岩松, 袁涛, 刘宁宁. 雨刮−风窗摩擦噪声声−固耦合分析[J]. 上海工程技术大学学报, 2025, 39(4): 375-381. doi: 10.12299/jsues.24-0162
引用本文: 黄志超, 王岩松, 袁涛, 刘宁宁. 雨刮−风窗摩擦噪声声−固耦合分析[J]. 上海工程技术大学学报, 2025, 39(4): 375-381. doi: 10.12299/jsues.24-0162
HUANG Zhichao, WANG Yansong, YUAN Tao, LIU Ningning. Acoustic-structural coupling analysis of wiper-windshield friction noise[J]. Journal of Shanghai University of Engineering Science, 2025, 39(4): 375-381. doi: 10.12299/jsues.24-0162
Citation: HUANG Zhichao, WANG Yansong, YUAN Tao, LIU Ningning. Acoustic-structural coupling analysis of wiper-windshield friction noise[J]. Journal of Shanghai University of Engineering Science, 2025, 39(4): 375-381. doi: 10.12299/jsues.24-0162

雨刮−风窗摩擦噪声声−固耦合分析

doi: 10.12299/jsues.24-0162
基金项目: 国家自然科学基金(52172371);上海市优秀学术/技术带头人计划(21XD1401100);上海市新能源汽车振动噪声评价与控制技术专业服务平台基金(18DZ2295900)
详细信息
    作者简介:

    黄志超 (2000 − ),男,硕士生,研究方向为雨刮−风窗摩擦噪声机理研究。E-mail:2569034270@qq.com

    通讯作者:

    王岩松 (1971 − ),男,教授,博士,研究方向为车辆噪声与振动测控技术。E-mail:jzwbt@163.com

  • 中图分类号: U463.9

Acoustic-structural coupling analysis of wiper-windshield friction noise

  • 摘要: 基于ADAMS建立雨刮片细化模型,分析雨刷片振动特性;利用Virtual.Lab建立前挡风玻璃与车厢腔体声−固耦合有限元模型,分析雨刮−风窗系统摩擦噪声传递至驾驶员位置的声压级,研究转速、摩擦模型及雨刮片扭转刚度对系统摩擦噪声特性的影响;通过实车雨刮−风窗系统试验验证仿真模型有效性。结果表明,建立的雨刮片细化模型和声−固耦合有限元模型与试验结果吻合,针对系统的3种摩擦噪声,转速、摩擦模型及雨刮片扭转刚度分别产生不同影响。
  • 图  1  雨刮片离散型柔性体细化模型

    Figure  1.  Detailed model of discrete flexible body of wiper blade

    图  2  雨刮−风窗系统摩擦振动和噪声测试现场

    Figure  2.  Wiper-windshield system friction vibration and noise test site

    图  3  雨刮片垂直振动加速度的功率谱密度对比

    Figure  3.  Power spectral density of wiper blade vertical vibration acceleration

    图  4  接触压力频域曲线

    Figure  4.  Frequency domain curve of contact pressure

    图  5  声学有限元模型

    Figure  5.  Acoustic finite element model

    图  6  不同工况下噪声自功率谱密度曲线对比

    Figure  6.  Comparison of noise response curves under different working conditions

    图  7  1/3倍频程下不同速度工况声压级对比

    Figure  7.  Comparison of sound pressure levels at 1/3 octave for different operating conditions

    图  8  1/3倍频程情况下不同摩擦模型声压级对比

    Figure  8.  Comparison of sound pressure levels of different friction models for 1/3 octave case

    图  9  1/3倍频程下不同扭转刚度声压级对比

    Figure  9.  Comparison of sound pressure levels at 1/3 octave with different torsional stiffness

    表  1  雨刮片结构参数

    Table  1.   Structural parameters of wiper blade

    参数
    无质量梁拉伸模量/MPa 7.1
    无质量梁剪切模量/MPa 2.38
    无质量梁截面积/mm2 6.79
    无质量梁的X轴惯性矩/mm4 3.06
    无质量梁的Y轴惯性矩/mm4 5.42
    无质量梁的Z轴惯性矩/mm4 8.48
    颈部扭转弹簧扭转刚度/(N·mm·rad−1) 5.8
    颈部扭转弹簧扭转阻尼/(N·mm·s·rad−1) 0.024
    刮片与挡风玻璃间接触刚度/(N·mm−1) 2.5
    刮片与挡风玻璃间接触阻尼/(N·s·mm−1) 0.9
    下载: 导出CSV

    表  2  声−固耦合仿真材料参数

    Table  2.   Material parameters for acoustic-structural coupling simulation

    参数 空气 玻璃 多孔材料
    密度(kg·m−3) 1.225 2750 64
    传播速度(m·s−1) 340
    杨氏模量(N·m−2) 7e+10
    泊松比 0.2
    体积模量(N·m−2) 28500
    结构损耗因子 0.01
    静态流阻率(Pa·m−2) 5000
    曲率 1.08
    下载: 导出CSV
  • [1] 张立军, 徐飞, 王小博. 汽车刮水器摩擦引起的噪声特性试验分析[J] . 同济大学学报(自然科学版), 2010, 38(7): 1062 − 1068. doi: 10.3969/j.issn.0253-374x.2010.07.022
    [2] MUSCA I, MUSCA G, VULTUR D C, et al. About the friction of the wiper windscreen contact[J] . Applied Mechanics and Materials, 2014, 658: 335 − 338. doi: 10.4028/www.scientific.net/AMM.658.335
    [3] 陈清泉, 董大伟, 闫兵, 等. 前雨刮器振动噪声的试验研究[J] . 机械科学与技术, 2010, 29(12): 1628 − 1632.
    [4] MIN D, JEONG S, YOO H H, et al. Experimental investigation of vehicle wiper blade’s squeal noise generation due to windscreen waviness[J] . Tribology International, 2014, 80: 191 − 197. doi: 10.1016/j.triboint.2014.06.024
    [5] 毛之安, 王岩松, 孙裴, 等. 雨刮反转过程振动冲击特性实验研究[J] . 噪声与振动控制, 2024, 44(1): 288 − 295. doi: 10.3969/j.issn.1006-1355.2024.01.044
    [6] MOHAMAD S M, OTHMAN N, SHARIF I, et al. Dynamic behaviour and characteristics of rubber blade car performance[J] . International Journal of Automotive and Mechanical, 2019, 16(1): 6437 − 6452.
    [7] LEE C E, KIM H Y. Analysis of the cross-sectional shape and wiping angle of a wiper blade[J] . SAE International Journal of Materials and Manufacturing, 2020, 13(2): 183 − 194.
    [8] HUANG M. Analysis of friction induced stability, bifurcation, chaos, stick-slip vibration and their impacts on wiping effect of automotive wiper system[J] . SAE International Journal of Passenger Cars-Mechanical Systems, 2014, 7(1): 21 − 31. doi: 10.4271/2014-01-0021
    [9] LANCIONI G, LENCI S, GALVANETTO U. Dynamics of windscreen wiper blades: squeal noise, reversal noise and chattering[J] . International Journal of Non-Linear Mechanics, 2016, 80: 132 − 143. doi: 10.1016/j.ijnonlinmec.2015.10.003
    [10] LANCIONI G, LENCI S, GALVANETTO U. Non-linear dynamics of a mechanical system with a frictional unilateral constraint[J] . International Journal of Non-Linear Mechanics, 2009, 44(6): 658 − 674. doi: 10.1016/j.ijnonlinmec.2009.02.012
    [11] BÓDAI G, GODA T J. Sliding friction of wiper blade: measurement, FE modeling and mixed friction simulation[J] . Tribology International, 2014, 70: 63 − 74. doi: 10.1016/j.triboint.2013.07.013
    [12] ZHAO Z H, YABUNO H, KAMIYAMA K. Dynamic analysis of a wiper blade in consideration of attack angle and clarification of the jumping phenomenon[J] . Applied Sciences, 2022, 12(9): 4112. doi: 10.3390/app12094112
    [13] YANG X, WANG Y S, ZHANG Z Y, et al. Simulation and experimental analysis on frictional vibration in the reversal process of a wiper-windscreen system[J] . Applied Acoustics, 2023, 203: 109211. doi: 10.1016/j.apacoust.2023.109211
    [14] YANG X, WANG Y S, GUO H, et al. A theoretical analysis of friction and vibration characteristics of wiper reversal process[J] . Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2023, 237(6): 1327 − 1337. doi: 10.1177/09544070221091021
    [15] AWANG I M, ABUBAKAR A R, GHANI B A, et al. Complex eigenvalue analysis of windscreen wiper chatter noise and its suppression by structural Modifications[J] . International Journal of Vehicle Structures & Systems, 2009, 1(1/3): 24 − 29.
    [16] CHEN T, HONG Y. Geometric analysis of the vibration of rubber wiper blade[J] . Taiwanese Journal of Mathematics, 2021, 25(3): 491 − 516.
    [17] GRAHAM B, KNOWLES J, MAVROS G. The influence of contact distribution shaping on the dynamic response of a wiper blade[J] . Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2024, 238(8): 2302 − 2311. doi: 10.1177/09544070231164792
    [18] LI Y Y, XU J J. Dynamic characteristics and generation mechanism of windscreen frameless wiper blade oscillations[J] . Nonlinear Dynamics, 2023, 111(4): 3053 − 3079. doi: 10.1007/s11071-022-08030-0
    [19] LE ROUZIC J, LE BOT A, PERRET-LIAUDET J, et al. Friction-induced vibration by stribeck’s law: application to wiper blade squeal noise[J] . Tribology Letters, 2013, 49(3): 563 − 572. doi: 10.1007/s11249-012-0100-z
    [20] WANG Y S, HUANG Z C, GUO H, et al. Vibration response analysis of boneless wiper-windshield system based on multi-body dynamics model[J] . Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2024: 1−16. DOI: 10.1177/09544070241248049
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  6
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-06
  • 网络出版日期:  2026-02-02
  • 刊出日期:  2025-12-01

目录

    /

    返回文章
    返回