Optimization of condenser fins and water harvesting experimental study on air-water harvesting device
-
摘要: 实验探究空气取水装置取水效率的影响因素,结果表明处理风机风速、环境空气温度和相对湿度都会影响装置的取水效率。实验中发现,翅片表面的冷凝水产生后未能及时滴落,而是黏附在翅片间形成水桥,这对装置的取水效率产生负面影响。为提高装置的取水效率,对冷凝翅片进行优化。使用COMSOL软件建模进行仿真分析,优化半导体制冷型空气取水装置的冷凝翅片结构,并在翅片表面涂覆疏水性材料,促使冷凝水快速滴落,提高了装置的取水效率。Abstract: An experimental investigation was conducted to explore the factors influencing the water harvesting efficiency of an air-water harvesting device. The results indicate that fan speed, ambient air temperature, and relative humidity significantly affect the performance. During the experiments, it was observed that condensate on the surface of the fins failed to shed promptly. Instead, it adhered between fins and formed water bridges, which negatively affected the water harvesting efficiency. To address this, the condenser fins were optimized. Using COMSOL for modeling and simulation, the fin structure of the semiconductor refrigeration air-water harvesting device was optimized, and hydrophobic materials were coated on the fin surface to facilitate rapid condensate shedding, thereby increasing the device's water harvesting efficiency.
-
表 1 实验方案
Table 1. Experimental scheme
组别 常量 变量 实验1 温度25 ℃,相对湿度60% 处理风机风速:3 、5、7 m/s 实验2 风机风速7 m/s,相对湿度60% 空气温度:15、25、35 ℃ 实验3 风机风速7 m/s,温度25 ℃ 相对湿度:30%、60%、90% -
[1] 雷静, 黄站峰, 李亚平. 长江中下游供水安全及其对上游水库调度需求[J] . 人民长江, 2011, 42(3): 46 − 48. [2] VAN DER BRUGGEN B, VANDECASTEELE C. Distillation vs. membrane filtration: overview of process evolutions in seawater desalination[J] . Desalination, 2002, 143(3): 207 − 218. doi: 10.1016/S0011-9164(02)00259-X [3] SPLETZER B L, CALLOW D S, MARRON L C, et al. Method and apparatus for extracting water from air: WO2001US16663[P] . 2002−03−07. [4] 张云凯. 沙漠地区太阳能半导体制冷空气取水装置的实验性研究[D] . 上海: 东华大学, 2014. [5] MUÑOZ-GARCÍA M A, MOREDA G P, RAGA-ARROYO M P, et al. Water harvesting for young trees using Peltier modules powered by photovoltaic solar energy[J] . Computers and Electronics in Agriculture, 2013, 93: 60 − 67. doi: 10.1016/j.compag.2013.01.014 [6] LOBO P C, KLUPPEL R P, De ARAUJO S R. Performance of an annular cylindrical solar collector[C] //Proceedings of the International Conference on Heliotechnique and Development. Cambridge: Development Analysis Associates, 1976: 233−244. [7] MALIK M A S, SHIHAB-ELDIN A, PURI V M, et al. Solar energy research, development & demonstration program in Kuwait[J] . Sun: Mankind's Future Source of Energy, 1978, 1: 68 − 71. [8] SODHA M S, NAYAK J K, TIWARI G N, et al. Double basin solar still[J] . Energy Conversion and Management, 1980, 20(1): 23 − 32. doi: 10.1016/0196-8904(80)90025-4 [9] JOSHI V P, JOSHI V S, KOTHARI H A, et al. Experimental investigations on a portable fresh water generator using a thermoelectric cooler[J] . Energy Procedia, 2017, 109: 161 − 166. doi: 10.1016/j.egypro.2017.03.085 [10] MAGRINI A, CATTANI L, CARTESEGNA M, et al. Production of water from the air: the environmental sustainability of air-conditioning systems through a more intelligent use of resources. the advantages of an integrated system[J] . Energy Procedia, 2015, 78: 1153 − 1158. doi: 10.1016/j.egypro.2015.11.081 [11] NADA S A, ELATTAR H F, FOUDA A. Experimental study for hybrid humidification–dehumidification water desalination and air conditioning system[J] . Desalination, 2015, 363: 112 − 125. doi: 10.1016/j.desal.2015.01.032 [12] 李兵. 太阳能半导体空气取水机工况的极值搜索与控制[D] . 杭州: 杭州电子科技大学, 2014. [13] GIDO B, FRIEDLER E, BRODAY D M. Assessment of atmospheric moisture harvesting by direct cooling[J] . Atmospheric Research, 2016, 182: 156 − 162. doi: 10.1016/j.atmosres.2016.07.029 [14] 刘伟, 明廷臻, 杨昆, 等. 太阳能烟囱电站中传热流动的数值模拟[C] //中国工程热物理学会2004年传热传质学学术会议论文集. 吉林: 中国工程热物理学会, 2004. [15] MING T Z, GONG T R, DE RICHTER R K, et al. A moist air condensing device for sustainable energy production and water generation[J] . Energy Conversion and Management, 2017, 138: 638 − 650. doi: 10.1016/j.enconman.2017.02.012 -
下载: