Design and analysis of bird wing for flapping-wing aircraft based on CFD method
-
摘要: 提出一种采用双“S”形对偶力矩传动机构的扑翼飞行器,为提高其运动性能,基于CFD方法对扑翼模型进行深入分析与优化。重点调整翼型的几何设计,包含前缘半径、后缘角、翼展长度以及翼型厚度等关键参数,以获得更优的气动升阻比。在ANSYS软件中利用优化后的网格算法生成高质量网格,并采用动网格技术对飞行器的运动过程进行流体力学仿真,分析飞行器在不同飞行姿态下的压力云图和速度云图,验证改进后的飞行器结构。结果表明,改进后的翼型能够有效减少压力集中并抑制涡流。Abstract: In order to improve the motion performance of a flapping-wing aircraft with a double “S” shaped dual-moment transmission mechanism, an in-depth analysis and optimization of the proposed novel flapping-wing model were conducted based on the computational fluid dynamics (CFD) method. The geometric design of the airfoil was adjusted by focusing on key parameters such as leading edge radius, trailing edge angle, wingspan length, and airfoil thickness to achieve a better aerodynamic lift-to-drag ratio. High-quality meshes were generated in ANSYS software using an optimized mesh algorithm, and the dynamic mesh technique was adopted to simulate the fluid dynamics of the vehicle’s movement. The pressure contours and velocity contours of the vehicle under different flight attitudes were analyzed to verify the improved vehicle structure. The results show that the improved airfoil can effectively reduce pressure concentration and suppress vortices.
-
Key words:
- flapping-wing aircraft /
- flexible wing /
- fluid simulation /
- mesh algorithm /
- dynamic mesh /
- cloud map
-
表 1 机翼几何参数
Table 1. Geometric parameters of wing
参数名称 数值 机翼弦长$ c $ /mm 120 机翼弯度$ f $ /mm 10.76 机翼相对弯度$ \stackrel{-}{f} $/mm 0.089 机翼厚度$ t $ /mm 21.22 机翼相对厚度$ \stackrel{-}{t} $/mm 0.176 机翼前缘半径$ {r}_{1} $/mm 6.2 机翼相对前缘半径$ \bar{{r}_{1}} $/mm 0.051 机翼后缘角$ \tau $/(°) $ {\text{tan}}\left(\dfrac{\tau }{2}\right)=0.5 $ 表 2 几何尺寸与升力、阻力之间的关系
Table 2. Relationship between geometric dimensions and lift resistance
主翼面积
S/mm2副翼面积
S/mm2翼展
b/mm升力
F/N阻力
F/N26 350 41 250 578.2 −0.84 0.00 39 525 61 875 867.3 −1.92 −0.01 52 700 82 500 1 156.4 −3.43 −0.02 65 875 103 125 1 445.4 −5.37 0.00 79 050 123 750 1 734.5 −7.88 −0.02 105 400 165 000 2 312.7 −0.04 −13.93 表 3 网格无关性验证结果
Table 3. Mesh independence verification results
尺寸/mm 网格数 升力/N 升力误差/% 12 169 603 −0.613 8 1.10 6 461 017 −0.624 6 0.64 4 912 260 −0.627 1 1.04 2 3 123 450 −0.608 7 1.92 1 11 695 895 −0.629 0 1.35 -
[1] De MANABENDRA M, SUDHAKAR Y, GADDE S, et al. Bio-inspired flapping wing aerodynamics: a review[J] . Journal of the Indian Institute of Science, 2024, 104(1): 181 − 203. doi: 10.1007/s41745-024-00420-0 [2] SEND W, FISCHER M, JEBENS K, et al. Artificial hinged-wing bird with active torsion and partially linear kinematics[C] //Proceedings of the 28th Congress of the International Council of the Aeronautical Sciences. Brisbane: ICAS, 2012: 1148 − 1157. [3] TEDRAKE R, JACKOWSKI Z, CORY R, et al. Learning to fly like a bird[C] //Proceedings of the 14th International Symposium on Robotics Research. New York: ACM, 2009. [4] 薛栋. 结构参数和机体运动对扑翼性能的影响研究[D] . 西安: 西北工业大学, 2018, doi: 10.27406/d.cnki.gxbgu.2018.000018. [5] 陈亮, 管贻生, 张宪民. 仿鸟扑翼机器人气动力建模与分析[J] . 华南理工大学学报(自然科学版), 2011, 39(6): 53 − 57, 70. [6] BANAZADEH A, TAYMOURTASH N. Adaptive attitude and position control of an insect-like flapping wing air vehicle[J] . Nonlinear Dynamics, 2016, 85(1): 47 − 66. doi: 10.1007/s11071-016-2666-8 [7] 赵晓伟, 曾东鸿, 占英, 等. 仿鸟类扑翼飞行器研究进展[J] . 动力学与控制学报, 2024, 22(4): 1 − 15. [8] 于丰博, 杨惠忠, 卿兆波. 基于D-H参数法的二自由度并联机械手逆运动学求解[J] . 制造业自动化, 2015, 37(22): 10 − 13. [9] 张庆, 叶正寅. 基于雨燕翅膀的仿生三角翼气动特性计算研究[J] . 力学学报, 2021, 53(2): 373 − 385. [10] SEDHAIN B K, DHUNGANA B, PAUDEL S, et al. Design and analysis of blended wing body aircraft for stability[M] //LI X G, RASHIDI M M, LATHER R S, et al. Emerging trends in mechanical and industrial engineering. Singapore: Springer, 2023: 875 − 890. [11] 布克. 翼型升力面流动控制及气动强化效应研究[D] . 哈尔滨: 哈尔滨工业大学, 2019. [12] 范福强, 邢素霞, 张俊举. 基于湍流模型的飞行器温度场数值仿真研究[J] . 激光与红外, 2024, 54(5): 766 − 773. [13] JIN B Y, GAO Z Y. Numerical simulation study on the influence of yaw-to-wind angular velocity on wind turbine aerodynamic characteristics[J] . Journal of Physics: Conference Series, 2023, 2488(1): 012038. doi: 10.1088/1742-6596/2488/1/012038 [14] 祁武超, 高展通, 田素梅. 仿绿头鸭扑翼飞行器的低速飞行气动特性仿真研究[J] . 无人系统技术, 2024, 7(2): 39 − 50. [15] KUMAR R, PREMACHANDRAN B. A coupled level set and volume of fluid method for three dimensional unstructured polyhedral meshes for boiling flows[J] . International Journal of Multiphase Flow, 2022, 156: 104207. doi: 10.1016/j.ijmultiphaseflow.2022.104207 [16] PRÜSS J, SIMONETT G. Moving interfaces and quasilinear parabolic evolution equations[M] . Cham: Birkhäuser, 2016. [17] BAYATI M S, KESHTKAR A, GHARIB L. Analyzing the near and far field using finite difference and finite element method[J] . IEEE Transactions on Plasma Science, 2013, 41(5): 1398 − 1402. doi: 10.1109/TPS.2013.2251480 [18] KROMER J, BOTHE D. Third-order accurate initialization of volume fractions on unstructured meshes with arbitrary polyhedral cells[J] . Journal of Computational Physics, 2023, 475: 111840. doi: 10.1016/j.jcp.2022.111840 [19] CHELLAPURATH M, NOBLE S, SREEJALEKSHMI K G. Design and kinematic analysis of flapping wing mechanism for common swift inspired micro aerial vehicle[J] . Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021, 235(19): 4026 − 4036. doi: 10.1177/0954406220974046 -
下载: