留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光选区熔化成形316不锈钢增材制造研究进展

张海波 刘延辉 张慧研 沈子昊 李传昌

张海波, 刘延辉, 张慧研, 沈子昊, 李传昌. 激光选区熔化成形316不锈钢增材制造研究进展[J]. 上海工程技术大学学报, 2024, 38(2): 158-164. doi: 10.12299/jsues.23-0238
引用本文: 张海波, 刘延辉, 张慧研, 沈子昊, 李传昌. 激光选区熔化成形316不锈钢增材制造研究进展[J]. 上海工程技术大学学报, 2024, 38(2): 158-164. doi: 10.12299/jsues.23-0238
ZHANG Haibo, LIU Yanhui, ZHANG Huiyan, SHEN Zihao, LI Chuanchang. Research progress in additively manufactured of selective laser melting 316 stainless steel[J]. Journal of Shanghai University of Engineering Science, 2024, 38(2): 158-164. doi: 10.12299/jsues.23-0238
Citation: ZHANG Haibo, LIU Yanhui, ZHANG Huiyan, SHEN Zihao, LI Chuanchang. Research progress in additively manufactured of selective laser melting 316 stainless steel[J]. Journal of Shanghai University of Engineering Science, 2024, 38(2): 158-164. doi: 10.12299/jsues.23-0238

激光选区熔化成形316不锈钢增材制造研究进展

doi: 10.12299/jsues.23-0238
基金项目: 国家自然科学基金资助(51471105);上海市教委上海高校知识创新工程建设项目(085工程)资助(JZ0901)
详细信息
    作者简介:

    张海波(1975 − ),男,讲师,硕士,研究方向为汽车激光焊接与新材料研究。E-mail:zhanghaibo@sues.edu.cn

    通讯作者:

    刘延辉(1974 − ),男,副教授,博士,研究方向为激光加工工艺和等离子熔覆技术。E-mail:scopey@163.com

  • 中图分类号: TG156

Research progress in additively manufactured of selective laser melting 316 stainless steel

  • 摘要: 激光选区熔化(selective laser melting, SLM)技术在航天汽车等金属增材制造领域具有广阔的应用前景。总结SLM316不锈钢材料在工艺、组织、性能和应用等方面的研究进展,分析探讨存在的问题与解决方法。分析SLM生产加工过程中生产工艺、产品质量和性能稳定性及后处理工艺等流程中存在的问题,进一步研究316不锈钢增材显微组织和力学特性,分析工艺过程对组织和性能的影响,合理控制激光增材制造成形过程,为技术在产业应用提供支撑。
  • 图  1  SLM 316不锈钢的微观组织

    Figure  1.  Microstructure of SLM 316 stainless steel

    图  2  铸造与SLM方法制造的316不锈钢样品磨损轨迹及SEM图

    Figure  2.  Wear tracks and SEM diagram of bulk and SLM 316 stainless steel samples manufactured by casting and SLM

    图  3  316不锈钢 SS试样的磨损轨迹中心区域图

    Figure  3.  Center area diagram of wear track on 316 stainless steel samples

    图  4  不同的拉伸断口形貌

    Figure  4.  Different tensile fracture morphologies

    图  5  铸造和SLM样品的循环极化曲线

    Figure  5.  Cyclic polarisation curves for casting and SLM 316 stainless steel samples

    表  1  4种不同工艺参数下拉伸性能指标

    Table  1.   Tensile performance indicators under four different process parameters

    工艺参数性能指标
    激光功率/W扫描速度/(mm·s-1层厚度/mm弹性模量/MPa屈服强度/MPa抗拉轻度/MPa伸长率/%
    3206500.05103 ± 3596 ± 1028.1 ± 2
    2209600.04684.7 ± 4.727.25 ± 3.35
    200554 ± 4.636.3 ± 2.1
    23080030720.3
    下载: 导出CSV

    表  2  不同扫描策略下316不锈钢的拉伸性能结果

    Table  2.   Tensile performance results of 316 stainless steel under different scanning strategies

    样品屈服强度/MPa抗拉强度/MPa伸长率/%面积减少/%偏差范围/%
    漫步式55568450.770.55 ± 0.3
    56168850.972.85 ± 0.3
    棋盘式5 × 5 mm54668449.572.35 ± 0.3
    53567752.770.05 ± 0.3
    棋盘式1 × 1 mm51966445.355.45 ± 0.3
    51866248.163.15 ± 0.3
    文献[9]实验55468536.05 ± 0.3
    文献[19]实验48759449.058.05 ± 0.3
    文献[13]实验59070036.05 ± 0.3
    文献[15]实验45064059.05 ± 0.3
    热加工 + 退火17048040.050.05 ± 0.3
    冷加工 + 退火17048030.040.05 ± 0.3
    冷加工31062030.040.05 ± 0.3
    下载: 导出CSV

    表  3  SLM和热处理样品的屈服强度和极限抗拉强度的平均值

    Table  3.   Average values of yield strength and ultimate tensile strength of SLM and heat treated samples

    测试样品 屈服强度/MPa 抗拉强度/MPa
    SLM 550 ± 10 1016 ± 8
    573 K 459 ± 3 969 ± 5
    873 K 440 ± 3 941 ± 4
    1273 K 347 ± 8 836 ± 7
    1373 K 243 ± 5 814 ± 7
    1673 K 174 ± 7 712 ± 4
    下载: 导出CSV
  • [1] RIEMER A, LEUDER S, THONE M, et al. On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting[J] . Engineering Fracture Mechanics, 2014, 120: 15 − 25.
    [2] CARROLL B E, PALMER T A, BEESE A M. Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing[J] . Acta Materialia, 2015, 87: 309 − 320.
    [3] THIJS L, VERHAEGHE F, CRAEGHS T, et al. A study of the microstructural evolution during selective laser melting of Ti–6Al–4V[J] . Acta Materialia,2010,58(9):3303 − 3312. doi: 10.1016/j.actamat.2010.02.004
    [4] ZAEH M F, BRANNER G. Investigations on residual stresses and deformations in selective laser melting[J] . Production Engineering,2010,4(1):35 − 45. doi: 10.1007/s11740-009-0192-y
    [5] YUSUF S M, CHEN Y F, BOARDMAN R, et al. Investigation on porosity and microhardness of 316L stainless steel fabricated by selective laser melting[J] . Metals,2023,39(7):64 − 72.
    [6] 丁利, 李怀学, 王玉岱, 等. 热处理对激光选区熔化成形 316不锈钢组织与拉伸性能的影响[J] . 中国激光,2015(4):179 − 185.
    [7] SUN Z J, TAN X P, TOR S B, et al. Selective laser melting of stainless steel 316L with low porosity and high build rates[J] . Materials & Design, 2016, 104: 359−359 − 3359 − 369.
    [8] LIVERANI E, TOSCHI S, CESCHINI L, et al. Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel[J] . Journal of Materials Processing Technology,2017,249:255 − 263.
    [9] CASATI R, LEMKE J, VEDANI M. Microstructure and fracture behavior of 316L austenitic stainless steel produced by selective laser melting[J] . Journal of Materials Science & Technology, 2016, 49(15): 739 − 740.
    [10] ZHENG Z, WANG L, YAN B. Effects of laser power on the microstructure and mechanical properties of 316L stainless steel prepared by selective laser melting[J] . International Journal of Modern Physics B,2017,31(16/19):174 − 186.
    [11] LODHIA M J K, DEENB K M, GREENLEE M C, et al. Additiely manufactured 316L stainless steel with improved corrosion resistance and biological response for biomedical applications[J] . Additive Manufacturing, 2019, 27: 8−8 − 19.
    [12] SAEIDI K, GAO X, ZHANG Y, et al. Hardened austenite steel with columnar sub-grain structures formed by laser melting[J] . Materials Science and Engineering: A, 2015, 625: 221 − 229.
    [13] WANG Z, GAO D. Friction and wear properties of stainless steel sliding against polyetheretherketone and carbon-fiber-reinforced polyether ether ketone under natural seawater lubrication[J] . Materials & design,2014,53(1):881 − 887.
    [14] BARTOLOMEUA F, BUCIUMEANU M, PINTO E, et al. 316L stainless steel mechanical and tribological behavior: A comparison between selective laser melting, hot pressing and conventional casting[J] . Additive Manufacturing,2017,25(12):81 − 89.
    [15] WANG P F, HAN Z. Friction and wear behaviors of a gradient nano-grained AISI 316L stainless steel under dry and oil-lubricated conditions[J] . Journal of Materials Science & Technology,2018,34(10):125 − 132.
    [16] ZHANG Z, CHU B, WANG L, et al. Comprehensive effects of placement orientation and scanning angle on mechanical properties and behavior of 316L stainless steel based on the selective laser melting process[J] . Journal of Alloys and Compounds, 2019, 791: 166 − 175.
    [17] SUN Y, MOROZ A, ALRBAEY K. Sliding wear characteristics and corrosion behaviour of selective laser melted 316L stainless steel[J] . Journal of Materials Engineering and Performance,2014,23(2):215 − 223.
    [18] CASATI R, LEMKE J, VEDANI M. Microstructure and fracture behavior of 316L austenitic stainless steel produced by selective laser melting[J] . Journal of Materials Science & Technology, 2016, 32(8): 738−738 − 7738 − 744.
    [19] ZHONG Y, LIU LF, WIKMAN S, et al. Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting[J] . Journal of Nuclear Materials, 2016, 470: 170 − 178.
    [20] ZHAO H, HUMBEECK JV, SOHIER J, et al. Electrochemical polishing of 316L stainless steel slotted tube coronary stents[J] . Journal of Materials Science. Materials in Medicine, 2002, 13(10): 911 − 916.
    [21] EHSANI A, MAHJANI MG, MOSHREFI R, et al. Electrochemical and DFT study on the inhibition of 361L stainless steel corrosion in acidic medium by 1-(4-nitrophenyl)-5-amino-1H- tetrazole[J] . RSC Advances,2014,4(38):2003 − 2010.
    [22] LUO J P, JIA X, GU R N, et al. 316L stainless steel manufactured by selective laser melting and its biocompatibility with or without hydroxyapatite coating[J] . Metals, 2018, 8(7): 548 − 555. doi: 10.3390/met8070548
    [23] MEI X , WANG X , PENG Y, et al. Interfacial characterization and mechanical properties of 316L stainless steel/inconel 718 manufactured by selective laser melting[J] . Materials Science and Engineering,2019(758):185 − 191.
    [24] QIU C, KINDI M A , ALADAWI A S, et al. A comprehensive study on microstructure and tensile behaviour of a selectively laser melted stainless steel[J] . Scientific Reports, 2018, 8(1): 7785.
    [25] SALMANA O O, GAMMER C, CHAUBEY A K, et al. Effect of heat treatment on microstructure and mechanical properties of 316L steel synthesized by selective laser melting[J] . Materials Science & Engineering, 2019, 748: 205 − 212.
    [26] Prashanth K G, Eckert J. Formation of metastable cellular microstructures in selective laser melted alloys[J] . Journal of Alloys and Compounds, 2017, 707: 27 − 34.
    [27] KARGAR B S, MOAYED M H, BABAKHANI A, et al. Improving the corrosion behaviour of powder metallurgical 316L alloy by prepassivation in 20% nitric acid[J] . Corrosion Science, 2011, 53(1): 135 − 146. doi: 10.1016/j.corsci.2010.09.004
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  150
  • HTML全文浏览量:  94
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-28
  • 刊出日期:  2024-06-30

目录

    /

    返回文章
    返回